10 resultados para molten castings

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Surface defects on steel parts borne costs of smelting industries due to the need of rework. Sand molds are frequently used in foundry industries and largely responsible for providing surface defects. This study aims to optimize the levels of the molding process variables to minimize the occurrence of surface defects in steel castings in silica sand molds chemically linked by cold cure process. The methodology used the experimental design with split plot, being considered in the study the resin percentage factors in the mold formulation, addition of iron oxide, type of paint, the paint application method, amount of ink layers, use of hot air along the lines and waiting time of the mold before casting. They were analyzed as response variables erosion defects, sand inclusion, penetration, porosity and surface finish. Tensile strength tests were performed to evaluate the influence of factors on mechanical parameters and the microstructural parameters were carried out the analysis of X-ray diffraction, scanning electron microscopy (SEM) and thermal analysis (TG / DSC / dilatometry). The results elucidate that for the faulty erosion, the only significant factor with a 95% confidence level was the type of ink and the ink alumina-based superior results obtained. For the sand inclusion of defect, there were three significant factors, with best results obtained with alumina-based paint and spray applied using hot air in the mold before casting the metal. For the defect penetration, there were four significant factors, the best results being achieved with 0.8% of resin and addition of iron oxide in the molding formulation, the paint being applied by brush and standby time of 24 hours before leak. For the defect porosity with a 95% confidence level, no significant factors. For the defect surface finish, the best results were achieved with the 0.8% formulation of the resin in the mold and application of the paint brush. To obtain the levels of the factors that optimize all defects simultaneously, we performed a weighted average of the results of each type of fault, concluding that the best levels of the factors were: 0.8% resin and addition of iron oxide in the formulation of the template, application of two coats of paint applied with a brush or spray, using hot air in the mold before casting and 24 hours of waiting ready the mold before casting. These levels of the optimized factors were used in an experiment to confirm that ratified the results, helping to reduce rework and consequently reducing costs of cast steel parts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study presents a simple, fast and low cost technique for fabrication new conventional dentures from the duplication of old prosthesis in use by the patient. Colorless acrylic resin was poured into the moulds obtained by duplication of prosthesis. With the replicas obtained a functional impressions using polyether should be performed and they are stabilized with occlusal registration in acrylic resin. The molds need to be castings and mounted on an semi-adjustable articulator. The artificial teeth are positioned with the assistance of a guide made condensation silicone to reproduce the positioning of the teeth of the old prosthesis and fixed with wax 7. After approval of the teeth on the trial in wax, without adjustment of the planes, the prosthesis may be processed in the laboratory. After occlusal adjustment in the articulator the same can be installed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To investigate the construction of cobalt-chromium removable partial dentures by commercial private dental laboratories. Methods: Ninety master casts for fabrication of cobalt-chromium removable partial dentures were obtained from three commercial laboratories randomly selected. Casts were assessed for dental arch treated, Kennedy classification, cast surveying, denture design information provided by the dentist, and mouth preparation (rest seat, guiding plane and retentive area). Dental technicians answered a questionnaire regarding qualification of assisted dentists, monthly number of framework castings, and use of dental surveyor. Mouth preparation was compared among laboratories using Kruskal-Wallis test (α=0.05). Results: The percentage of Kennedy class I was 16%, class II 19%, class III 56%, and class IV 9%. The majority of master cats (51%) examined was sent to dental laboratories without any design information and did not comply with ethical guidelines in the provision of RPD. Approximately half of the casts were considered “inappropriate” for guiding planes and retentive areas. One of the laboratories presented all casts “inappropriate” for rest seat distribution (p<0.001). Conclusions: Mouth preparation frequently failed for guiding planes, retentive areas and distribution of rest seats. It is necessary to provide students with adequate clinical experience at the dental school environment, which will actually be carried into the practice of dentistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: To investigate the construction of cobalt-chromium removable partial dentures by commercial private dental laboratories. Methods: Ninety master casts for fabrication of cobalt-chromium removable partial dentures were obtained from three commercial laboratories randomly selected. Casts were assessed for dental arch treated, Kennedy classification, cast surveying, denture design information provided by the dentist, and mouth preparation (rest seat, guiding plane and retentive area). Dental technicians answered a questionnaire regarding qualification of assisted dentists, monthly number of framework castings, and use of dental surveyor. Mouth preparation was compared among laboratories using Kruskal-Wallis test (α=0.05). Results: The percentage of Kennedy class I was 16%, class II 19%, class III 56%, and class IV 9%. The majority of master cats (51%) examined was sent to dental laboratories without any design information and did not comply with ethical guidelines in the provision of RPD. Approximately half of the casts were considered “inappropriate” for guiding planes and retentive areas. One of the laboratories presented all casts “inappropriate” for rest seat distribution (p<0.001). Conclusions: Mouth preparation frequently failed for guiding planes, retentive areas and distribution of rest seats. It is necessary to provide students with adequate clinical experience at the dental school environment, which will actually be carried into the practice of dentistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among the options for plastics modification more convenient, both from a technical-scientific and economic, is the development of polymer blends by processing in the molten state. This work was divide into two stages, with the aim to study the phase morphology of binary blend PMMA / PET blend and this compatibilized by the addition of the poly(methyl methacrylate-co-glycidyl methacrylate-co-ethyl acrylate) copolymer (MMA-GMA-EA). In the first stage is analyzed the morphology of the blend at a preliminary stage where we used the bottle-grade PET in a Haake torque rheometer and the effect of compatibilizer in this blend was evaluated. In the second stage the blend was processed using the recycled PET in a single screw extruder and subsequently injection molding in the shape of specimens for mechanical tests. In both stages we used a transmission electron microscopy (TEM) to observe the morphologies of the samples and an image analyzer to characterize them. In the second stage, as well as analysis by TEM, tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM) was performed to correlate the morphology with the mechanical properties. The samples used in morphological analyzes were sliced by cryo-ultramicrotomy technique for the analysis by TEM and the analysis by SEM and AFM, we used the flat face of the block after cut cryogenic. It was found that the size of the dispersed phase decreased with the addition of MMA-GMA-EA in blends prepared in a Haake. In the tensile test, the values of maximum tensile strength and modulus of elasticity is maintained in a range between the value of pure PMMA the pure PET, while the elongation at break was influenced by the composition by weight of the PMMA mixture. The coupling agent corroborated the results presented in the blend PMMA / PETrec / MMA-GMA-EA (80/15/5 %w/w), obtained by TEM, AFM and SEM. It was concluded that the techniques used had a good morphologic correlation, and can be confirmed for final analysis of the morphological characteristics of the blends PMMA / PET

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study aimed at the treatment of attapulgite for the development and characterization of composite recycled low density polyethylene - PEBD_rec embedded with natural attapulgite - ATP_NAT, sifted - ATP_PN and attapulgite treated with sulfuric acid - ATP_TR in different compositions (1, 3 and 5%) and compared with the PEBD_rec. The atapulgitas, natural, screened and treated, were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), particle size analysis, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and determining the area specific surface (BET). The composites were characterized by thermogravimetry (TG), differential scanning calorimetry (DSC), Xray diffraction (XRD), torque rheometry, scanning electron microscopy (SEM) and traction. The composite PEBD_rec / ATP (natural, sieved and treated) were produced by mixing in the molten state in a single screw extruder matrix wire with subsequent reprocessing matrix tape. It was found that the screening of attapulgite not reduce the quantity of quartz and the acid treatment completely extracted dolomite aggregate impurities of the channels attapulgite, and increase their surface area. The addition of attapulgite in PEBD_rec acts as a catalyst, reducing the thermal stability of the polymer. The increased concentration of attapulgite, increases resistance and reduces the elongation at break and modulus of elasticity of the composite PEBD_rec / attapulgite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ceramic filters are cellular structures that can be produced by various techniques, among which we highlight the replication method, or method of polymeric sponge. This method consists of impregnating polymeric foam with ceramic slurry, followed by heat treatment, where will occur decomposition of organic material and the sinter of the ceramic material, resulting in a ceramic whose structure is a replica of the impregnated sponge. Ceramic filters have specific properties that make this type of material very versatile, used in various technological applications such as filters for molten metals and burners, make these materials attractive candidates for high temperature applications. In this work we studied the systems Al2O3-LZSA ceramic filters processed in the laboratory, and commercial Al2O3-SiC ceramics filters, both obtained by the replica method, this work proposes the thermal and mechanical characterization. The sponge used in the processing of filters made in the laboratory was characterized by thermogravimetric analysis. The ceramic filters were characterized by compressive strength, flexural strength at high temperatures, thermal shock, permeability and physical characterization (density and porosity) and microstructural (MEV and X-rays). From the results obtained, the analysis was made of the mechanical behavior of these materials, comparing the model proposed by Gibson and Ashby model and modified the effective area and the tension adjusted, where the modified model adapted itself better to the experimental results, representing better the mechanical behavior of ceramic filters obtained by the replica method