11 resultados para modified ground plane

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The microstrip antennas in your simplest form consist of a ground plane and a dielectric substrate which supports a conductive tape. As these antennas have some limitations, this work presents a study of anisotropic substrates, as well as some results in microstrip antennas with circular patch, aiming to overcome these limitations, especially in applications at 4G technology. These anisotropic substrates are those in which electrical permittivity and magnetic permeability are represented by tensors of second order. The study consists of a theoretical analysis of substrates and development of a mathematical formalism, the Transverse Transmission Line Method, aimed the application of these substrates in microstrip antennas. Among the substrates used in this study, there are the ferrimagnetic and metamaterials, in which some miniaturizations of the antennas are achieved. For antennas with circular patch, are considered arrays and modified ground planes in order to achieve improvement in parameters, in particular, gain and bandwidth. Several simulations have been made and antennas were constructed so that the measured values could be compared with the simulated values.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a theoretical and experimental investigation about the properties of microstrip antennas for ultra-wideband systems. Configurations of elliptic monopoles with different eccentricities and circular monopoles are considered. Two prototypes for each antenna configuration were built, one with the typical microstrip configuration and the other is similar to the first, except for a small aperture in the ground plane. Therefore, this work proposes to modify the configuration of the ground plane of the monopoles designed adding a rectangular stub, in order to optimize and improve the performance of such structures. The obtained results show that the introduction of that rectangular aperture in the ground plane allows an improvement of the frequency response for the considered antenna propotypes. It is observed a good agreement between the measured and simulated results. Finally, some proposals for future works are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work aims to show how the application of frequency selective surfaces (FSS) in planar antenna arrays become an alternative to obtain desired radiation characteristics from changes in radiation parameters of the arrays, such as bandwidth, gain and directivity. In addition to analyzing these parameters is also made a study of the mutual coupling between the elements of the array. To accomplish this study, were designed a microstrip antenna array with two patch elements, fed by a network feed. Another change made in the array was the use of the truncated ground plane, with the objective of increasing the bandwidth and miniaturize the elements of the array. In order to study the behavior of frequency selective surfaces applied in antenna arrays, three different layouts were proposed. The first layout uses the FSS as a superstrate (above the array). The second layout uses the FSS as reflector element (below the array). The third layout is placed between two FSS. Numerical and experimental results for each of the proposed configurations are presented in order to validate the research

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The microstrip antennas are largely used in wireless communication systems due to their low cost, weight, less complex construction and manufacturing, in addition to its versatility. UWB systems have emerged as an alternative to wireless communications over short distances because they offer of higher capacity and lower multipath distortion than other systems with the same purpose. Combining the advantages of microstrip antennas to the characteristics of UWB, it is possible to develop more and more smaller devices, with diverse geometries to operate satisfactorily in these systems. This paper aims to propose alternatives to microstrip antennas for UWB systems operate in the range between 3.1 and 10.6 GHz, with a patch on circular ring. Some techniques are analyzed and employed to increase the bandwidth of proposed antenna: the insertion of a parasitic elements and a rectangular slit in the displaced ground plane. For this, key issues are presented as the basic principles of UWB systems, the fundamental theory of antennas and microstrip antennas. The simulations and experimental characterization of constructed antennas are presented, as well as analysis of parameters such as bandwidth and radiation pattern

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents the analysis of an antenna of fractal microstrip of Koch with dielectric multilayers and inclinations in the ground plane, whose values of the angles are zero degree (without inclinations), three, seven and twelve degrees. This antenna consists of three dielectric layers arranged vertically on each other, using feeding microstrip line in patch 1, of the first layer, which will feed the remaining patches of the upper layers by electromagnetic coupling. The objective of this work is to analyze the effects caused by increase of the angle of inclination of the ground plane in some antenna parameters such as return loss, resonant frequency, bandwidth and radiation pattern. The presented results demonstrate that with the increase of the inclination angle it is possible to get antennas with characteristics multiband, with bigger bandwidth, and improving the impedance matching for each case analyzed, especially the larger angle

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work consists on the theoretical and numerical analysis of some properties of circular microstrip patch antennas on isotropic and uniaxial anisotropic substrates. For this purpose, a full wave analysis is performed, using Hertz Vector Potentials method in the Hankel Transform domain. In the numerical analysis, the moment method is also used in order to determine some characteristics of the antenna, such as: resonant frequency and radiation pattern. The definition of Hertz potentials in the Hankel domain is used in association with Maxwell´s equations and the boundary conditions of the structures to obtain the Green´s functions, relating the components of the current density on the patch and the tangential electric field components. Then, the Galerkin method is used to generate a matrix equation whose nontrivial solution is the complex resonant frequency of the structure. In the analysis, a microstrip antenna with only one isotropic dielectric layer is initially considered. For this structure, the effect of using superconductor patches is also analyzed. An analysis of a circular microstrip antenna on an uniaxial anisotropic dielectric layer is performed, using the Hertz vector potentials oriented along the optical axis of the material, that is perpendicular to the microstrip ground plane. Afterwards, the circular microstrip antenna using two uniaxial anisotropic dielectric layers is investigated, considering the particular case in which the inferior layer is filled by air. In this study, numerical results for resonant frequency and radiation pattern for circular microstrip antennas on isotropic and uniaxial anisotropic substrates are presented and compared with measured and calculated results found in the literature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a theoretical and experimental analysis about the properties of microstrip antennas with integrated frequency selective surfaces (Frequency Selective Surface - FSS). The integration occurs through the insertion of the FSS on ground plane of microstrip patch antenna. This integration aims to improve some characteristics of the antennas. The FSS using patch-type elements in square unit cells. Specifically, the simulated results are obtained using the commercial computer program CST Studio Suite® version 2011. From a standard antenna, designed to operate in wireless communication systems of IEEE 802.11 a / b / g / n the dimensions of the FSS are varied to obtain an optimization of some antenna parameters such as impedance matching and selectivity in the operating bands. After optimization of the investigated parameters are built two prototypes of microstrip patch antennas with and without the FSS ground plane. Comparisons are made of the results with the experimental results by 14 ZVB network analyzer from Rohde & Schwarz ®. The comparison aims to validate the simulations performed and show the improvements obtained with the FSS in integrated ground plane antenna. In the construction of prototypes, we used dielectric substrates of the type of Rogers Corporation RT-3060 with relative permittivity equal to 10.2 and low loss tangent. Suggestions for continued work are presented

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents an evaluative study about the effects of using a machine learning technique on the main features of a self-organizing and multiobjective genetic algorithm (GA). A typical GA can be seen as a search technique which is usually applied in problems involving no polynomial complexity. Originally, these algorithms were designed to create methods that seek acceptable solutions to problems where the global optimum is inaccessible or difficult to obtain. At first, the GAs considered only one evaluation function and a single objective optimization. Today, however, implementations that consider several optimization objectives simultaneously (multiobjective algorithms) are common, besides allowing the change of many components of the algorithm dynamically (self-organizing algorithms). At the same time, they are also common combinations of GAs with machine learning techniques to improve some of its characteristics of performance and use. In this work, a GA with a machine learning technique was analyzed and applied in a antenna design. We used a variant of bicubic interpolation technique, called 2D Spline, as machine learning technique to estimate the behavior of a dynamic fitness function, based on the knowledge obtained from a set of laboratory experiments. This fitness function is also called evaluation function and, it is responsible for determining the fitness degree of a candidate solution (individual), in relation to others in the same population. The algorithm can be applied in many areas, including in the field of telecommunications, as projects of antennas and frequency selective surfaces. In this particular work, the presented algorithm was developed to optimize the design of a microstrip antenna, usually used in wireless communication systems for application in Ultra-Wideband (UWB). The algorithm allowed the optimization of two variables of geometry antenna - the length (Ls) and width (Ws) a slit in the ground plane with respect to three objectives: radiated signal bandwidth, return loss and central frequency deviation. These two dimensions (Ws and Ls) are used as variables in three different interpolation functions, one Spline for each optimization objective, to compose a multiobjective and aggregate fitness function. The final result proposed by the algorithm was compared with the simulation program result and the measured result of a physical prototype of the antenna built in the laboratory. In the present study, the algorithm was analyzed with respect to their success degree in relation to four important characteristics of a self-organizing multiobjective GA: performance, flexibility, scalability and accuracy. At the end of the study, it was observed a time increase in algorithm execution in comparison to a common GA, due to the time required for the machine learning process. On the plus side, we notice a sensitive gain with respect to flexibility and accuracy of results, and a prosperous path that indicates directions to the algorithm to allow the optimization problems with "η" variables

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recently, an amazing development has been observed in telecommunication systems. Two good examples of this development are observed in mobile communication and aerospace systems. This impressive development is related to the increasing need for receiving and transmitting communication signals. Particularly, this development has required the study of new antennas and filters. This work presents a fullwave analysis of reflectarrays. The considered structures are composed by arrays of rectangular conducting patches printed on multilayer dieletric substrates, that are mounted on a ground plane. The analysis is developed in the spectral domain, using an equivalent transmission line method in combination with Galerkin method. Results for the reflection coefficient of these structures are presented and compared to those available in the literature. A good agreement was observed. Particularly, the developed analysis uses the transmission lines theory in combination with the incident potentials and the field continuity equations, at the structures interfaces, for obtaining the scattered field components expressions as function of the patch surface currents and of the incident field. Galerkin method is used to determine the unknown coefficients in the boundary value problem. Curves for the reflection coefficient of several reflectarray geometries are presented as function of frequency and of the structural parameters

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this dissertation, are presented two microstrip antennas and two arrays for applications in wireless communication systems multiband. Initially, we studied an antenna and a linear array consisting of two elements identical to the patch antenna isolated. The shape of the patch used in both structures is based on fractal geometry and has multiband behavior. Next a new antenna is analyzed and a new array such as initial structure, but with the truncated ground plane, in order to obtain better bandwidths and return loss. For feeding the structures, we used microstrip transmission line. In the design of planar structures, was used HFSS software for the simulation. Next were built and measures electromagnetic parameters such as input impedance and return loss, using vector network analyzer in the telecommunications laboratory of Federal University of Rio Grande do Norte. The experimental results were compared with the simulated and showed improved return loss for the first array and also appeared a fourth band and increased directivity compared with the isolated antenna. The first two benefits are not commonly found in the literature. For structures with a truncated ground planes, the technique improved impedance matching, bandwidth and return loss when compared to the initial structure with filled ground planes. Moreover, these structures exhibited a better distribution of frequency, facilitating the adjustment of frequencies. Thus, it is expected that the planar structures presented in this study, particularly arrays may be suitable for specific applications in wireless communication systems when frequency multiband and wideband transmission signals are required.