11 resultados para miniaturization

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The characteristic properties of the fractal geometry have shown to be very useful for the construction of filters, frequency selective surfaces, synchronized circuits and antennas, enabling optimized solutions in many different commercial uses at microwaves frequency band. The fractal geometry is included in the technology of the microwave communication systems due to some interesting properties to the fabrication of compact devices, with higher performance in terms of bandwidth, as well as multiband behavior. This work describes the design, fabrication and measurement procedures for the Koch quasi-fractal monopoles, with 1 and 2 iteration levels, in order to investigate the bandwidth behavior of planar antennas, from the use of quasi-fractal elements printed on their rectangular patches. The electromagnetic effect produced by the variation of the fractal iterations and the miniaturization of the structures is analyzed. Moreover, a parametric study is performed to verify the bandwidth behavior, not only at the return loss but also in terms of SWR. Experimental results were obtained through the accomplishment of measurements with the aid of a vetorial network analyzer and compared to simulations performed using the Ansoft HFSS software. Finally, some proposals for future works are presented

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a theoretical and numerical analysis of the parameters of a rectangular microstrip antenna with metamaterial substrate. The metamaterial (MTM) theory was applied along with Transverse Transmission Line (LTT) method to characterize substrate quantities and obtain the general equations of the electromagnetic fields. A study on metamaterial theory was conducted to obtain the constructive parameters, which were characterized through permittivity and permeability tensors to arrive at a set of electromagnetic equations. Electromagnetic principes are used to obtained parameters such as complex resonance frequency, bandwidth and radiation pattern were then obtained. Different metamaterial and antenna configurations were simulated to miniaturize them physically and increase their bandwidth, the results of which are shown through graphics. The theoretical computational analysis of this work proved to be accurate when compared to other studies, and may be used for other metamaterial devices. Conclusions and suggestions for future work are also proposed

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents techniques used to design and manufacture microstrip patch antennas for applications in portable and mobile devices. To do so, are evaluated several factors that can influence the performance of microstrip patch antennas. Miniaturization techniques are studied and employed in order to apply this type of antenna in mobile and / or mobile. The theories of microstrip patch antennas are addressed by analyzing characteristics such as constitution, kinds of patches, substrates, feeding methods, analysis methods, the main advantages and disadvantages and others. Techniques for obtaining broadband microstrip patch antennas were surveyed in literature and exemplified mainly by means of simulations and measurements. For simulations of the antennas was used the commercial software . In addition, antenna miniaturization techniques have been studied as a main concern the fundamental limits of antennas with special attention to electrically small antennas because they are directly linked to the microstrip patch antennas. Five design antennas are proposed to demonstrate the effectiveness of techniques used to obtain the microstrip patch antennas broadband and miniaturized for use in mobile devices and/or portable. For this, the proposed antennas were simulated, built and measured. The antennas are proposed to be used in modern systems of wireless communications such as DTV, GPS, IEEE 802.16, IEEE 802.11, etc. The simulations of the antennas were made in business and computer programs. The measured results were obtained with a parser Vector of networks of the Rhode and Schwarz model ZVB 14

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aims to investigate the behavior of fractal elements in planar microstrip structures. In particular, microstrip antennas and frequency selective surfaces (FSSs) had changed its conventional elements to fractal shapes. For microstrip antennas, was used as the radiating element of Minkowski fractal. The feeding method used was microstrip line. Some prototypes were built and the analysis revealed the possibility of miniaturization of structures, besides the multiband behavior, provided by the fractal element. In particular, the Minkowski fractal antenna level 3 was used to exploit the multiband feature, enabling simultaneous operation of two commercial tracks (Wi-Fi and WiMAX) regulated by ANATEL. After, we investigated the effect of switches that have been placed on the at the pre-fractal edges of radiating element. For the FSSs, the fractal used to elements of FSSs was Dürer s pentagon. Some prototypes were built and measured. The results showed a multiband behavior of the structure provided by fractal geometry. Then, a parametric analysis allowed the analysis of the variation of periodicity on the electromagnetic behavior of FSS, and its bandwidth and quality factor. For numerical and experimental characterization of the structures discussed was used, respectively, the commercial software Ansoft DesignerTM and a vector network analyzer, Agilent N5230A model

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work has as main objective the application of Artificial Neural Networks, ANN, in the resolution of problems of RF /microwaves devices, as for example the prediction of the frequency response of some structures in an interest region. Artificial Neural Networks, are presently a alternative to the current methods of analysis of microwaves structures. Therefore they are capable to learn, and the more important to generalize the acquired knowledge, from any type of available data, keeping the precision of the original technique and adding the low computational cost of the neural models. For this reason, artificial neural networks are being increasily used for modeling microwaves devices. Multilayer Perceptron and Radial Base Functions models are used in this work. The advantages/disadvantages of these models and the referring algorithms of training of each one are described. Microwave planar devices, as Frequency Selective Surfaces and microstrip antennas, are in evidence due the increasing necessities of filtering and separation of eletromagnetic waves and the miniaturization of RF devices. Therefore, it is of fundamental importance the study of the structural parameters of these devices in a fast and accurate way. The presented results, show to the capacities of the neural techniques for modeling both Frequency Selective Surfaces and antennas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The continuous evolution of integrated circuit technology has allowed integrating thousands of transistors on a single chip. This is due to the miniaturization process, which reduces the diameter of wires and transistors. One drawback of this process is that the circuit becomes more fragile and susceptible to break, making the circuit more susceptible to permanent faults during the manufacturing process as well as during their lifetime. Coarse Grained Reconfigurable Architectures (CGRAs) have been used as an alternative to traditional architectures in an attempt to tolerate such faults due to its intrinsic hardware redundancy and high performance. This work proposes a fault tolerance mechanism in a CGRA in order to increase the architecture fault tolerance even considering a high fault rate. The proposed mechanism was added to the scheduler, which is the mechanism responsible for mapping instructions onto the architecture. The instruction mapping occurs at runtime, translating binary code without the need for recompilation. Furthermore, to allow faster implementation, instruction mapping is performed using a greedy module scheduling algorithm, which consists of a software pipeline technique for loop acceleration. The results show that, even with the proposed mechanism, the time for mapping instructions is still in order of microseconds. This result allows that instruction mapping process remains at runtime. In addition, a study was also carried out mapping scheduler rate. The results demonstrate that even at fault rates over 50% in functional units and interconnection components, the scheduler was able to map instructions onto the architecture in most of the tested applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential replacement for be lighter and cheaper than tantalum. They belong to the same table group periodically and thus exhibit several physical and chemical properties similar. Niobium is used in many technologically important applications, and Brazil has the largest reserves, around 96%. These electrolytic capacitors have high specific capacitance, so they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium poder was first characterized by XRD, SEM and laser particle size to then be sieved into particle size 400mesh. The powder was then compacted at pressure of 150MPa and sintered at 1400, 1450 and 1500°C using two sintering time 30 and 60min. Sintering is an important part of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. After sintering the samples were underwent a process of anodic oxidation (anodizing), which created a thin film of niobium pentoxide over the whole surface of the sample, this film is the dielectric capacitor. The anodizing process variables influenced a lot in film formation and consequently the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor and ESR (equivalent series resistance). The sintering has affected the porosity and in turn the specific area of the samples. The capacitor area is directly related to the capacitance, that is, the higher the specific area is the capacitance. Higher sintering temperatures decrease the surface area but eliminate as many impurities. The best results were obtained at a temperature of 1400°C with 60 minutes. The most interesting results were compared with the specific capacitance and ESR for all samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It seeks to find an alternative to the current tantalum electrolytic capacitors in the market due to its high cost. Niobium is a potential substitute, since both belong to the same group of the periodic table and because of this have many similar physical and chemical properties. Niobium has several technologically important applications, and Brazil has the largest reserves, around 96%. There are including niobium in reserves of tantalite and columbite in Rio Grande do Norte. These electrolytic capacitors have high capacitance specifies, ie they can store high energy in small volumes compared to other types of capacitors. This is the main attraction of this type of capacitor because is growing demand in the production of capacitors with capacitance specifies increasingly high, this because of the miniaturization of various devices such as GPS devices, televisions, computers, phones and many others. The production route of the capacitor was made by powder metallurgy. The initial niobium powder supplied by EEL-USP was first characterized by XRD, SEM, XRF and laser particle size, to then be sieved into three particle size, 200, 400 e 635mesh. The powders were then compacted and sintered at 1350, 1450 and 1550°C using two sintering time 30 and 60min. Sintering is one of the most important parts of the process as it affects properties as porosity and surface cleaning of the samples, which greatly affected the quality of the capacitor. The sintered samples then underwent a process of anodic oxidation, which created a thin film of niobium pentóxido over the whole porous surface of the sample, this film is the dielectric capacitor. The oxidation process variables influence the performance of the film and therefore the capacitor. The samples were characterized by electrical measurements of capacitance, loss factor, ESR, relative density, porosity and surface area. After the characterizations was made an annealing in air ate 260ºC for 60min. After this treatment were made again the electrical measurements. The particle size of powders and sintering affected the porosity and in turn the specific area of the samples. The larger de area of the capacitor, greater is the capacitance. The powder showed the highest capacitance was with the smallest particle size. Higher temperatures and times of sintering caused samples with smaller surface area, but on the other hand the cleaning surface impurities was higher for this cases. So a balance must be made between the gain that is achieved with the cleaning of impurities and the loss with the decreased in specific area. The best results were obtained for the temperature of 1450ºC/60min. The influence of annealing on the loss factor and ESR did not follow a well-defined pattern, because their values increased in some cases and decreased in others. The most interesting results due to heat treatment were with respect to capacitance, which showed an increase for all samples after treatment