14 resultados para mercury cadmium lead removal petroleum demetalation ionic liq

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study is conducted in the estuary of the rivers Jundiaí and Potengi, one of the most important estuaries of Rio Grande do Norte, which suffers a strong anthropogenic influence from neighboring cities. According to Resolution 344/2005 environments that have high concentrations of metals such as arsenic, cadmium, lead and mercury need ecotoxicological tests. This study aims to evaluate the heavy metals contamination in the estuary through analysis of sediment collected at four points distributed from Macaíba to Natal city, and in the crab Uçá, Ucides cordatus. The study aims also to evaluate the effects of sediment toxicity in the tests organisms Leptocheirus plumulosus. To obtain data about the concentrations of heavy metals in the environment, sediments were collected in January and May 2011 and crab Uçá was collected in June 2011. On the other hand the monitoring was carried out through toxicological tests with sediment collected from July to October 2011. During the collection of sediment samples the physico-chemical parameters of water (dissolved oxygen, pH, chloride, turbidity, conductivity and temperature) were measured by using multi-parametric probe (TROLL 9500). It was possible to identify contamination by metals such as lead, cadmium, arsenic and copper both in the sediment and in the Uçá crab, which characterizes that the consumption of this crustacean may be a risk to human health. Once the concentrations of metals were identified, toxicology tests were performed and revealed toxic effect to organisms in at least one of the four months studied. Point 2 was classified as toxic in three of the four months studied . The heavy metal contamination is a risk to the environment, to aquatic organisms and to the community which survives of resources taken from the environment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is located in an area of increasing oil exploration, the region of the Lower Açu is at the mercy of a possible pollution generated by this economic activity, which includes various chemical substances harmful to health, such as metals. This thesis aims to, diagnose the areas of River Piranhas-Açu, a region of the Lower Açu, which are polluted by traces factors and more. In this study, it was determined the concentration of the chemica elements Al, CD, Cr, Cu, Fe, Mn, Ni, P, Pb, V and Zn, through the technique of ICP-OES analysis and the size of sediments and their contents organic matter. Were mapped by GPS, 12 points from collections. The interpretations of the results, together associating that allowed pollution to a possible contamination by oil activity. The results showed tha some regions have low concentrations of cadmium, lead, copper, manganese and zinc unable to promote damage to human health. However, there are places where the concentrations of certain metals chromium, iron and zinc are moderately polluted compared to the results with the reference values of literature and others that are highly polluted by iron. However, due to a greater number of wells in production in those locations, those higher concentrations, it can be suggested a possible influence of oi production in some areas with concentrations of chromium and lead are higher than the rest of the points of monitoring. Moreover, it is observed that the highest levels of metals found in sediment of finer texture and more organic matter content

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban drainage is one of the powers of environmental sanitation and its scope is the quantitative and qualitative aspects. In decision making of managers and the engineering aspects of design are almost always taken into account only the quantitative aspects. However, the waters of the runoff have the highest concentrations of pollutants at the beginning of precipitation. Thus, if the plot pollution removed, the remaining portion can be used for other purposes. This work has aimed to present the variation of water quality of two drainage basins in the city of Natal / RN-Brazil to support the implementation of drainage to consider the qualitative aspect, and identify potential for the use of water. The basins (M and C) are analyzed closed-type, are in the urban area, are predominantly residential occupation and its waters are used for detention ponds and infiltration. The samples were divided into three phases, the first two direct to final points in a basin and the third in traps distributed over the surface drainage. The parameters had been analyzed were pH, conductivity, dissolved oxygen, Color, Turbidity, COD, Ammonia, nitrite, nitrate, total phosphorus, orthophosphate, Sediments solids, total solids, chloride, sulfate, alkalinity, calcium, magnesium, sodium, potassium, Heavy Metals (Chromium, Cadmium, Lead, Zinc and Copper), Eschichia coli and total coliforms. The parameters studied showed high initial pollution load, events and located in different proportions, except nitrite, heavy metals and biological indicators. The size of the surface drainage and topographic its features influence the quality of water. However, the form of sampling is crucial in the qualitative study in the basin. The samplers developed at work, were generated economic and representative results. The urban rainwater presents organic faecal indicators. The runoff of water from both basins shows no risk of salinity and sodicity for use in irrigation, should be noted the content of chloride in the choice of method of irrigation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aims to determine the amount of nutrients and toxic elements in aquatic macrophytes of species Eichhornia crassipes present in River Apodi/Mossoró - RN and check some of the possibilities of using the biomass produced, based on the influence of space - temporal and physiological absorption of nutrients by plants. For this, was determined: Leaf area, Leaf wet mass, Leaf dry mass, Real humidity, Apparent humidity, Ash, Total nitrogen, Crude protein, Calcium, Magnesium, Potassium, Total phosphorus, Sodium, Iron, Copper, Manganese, Zinc, Nickel, Cobalt, Aluminum, Cadmium, Lead and Total chromium at different times, 2 sampling points and 2 parts of plants (leaves and roots). The results show that the levels of nutrients, protein and toxic elements present in plant tissue of Eichhornia crassipes are influenced by spatial, temporal and physiological variability. In general, because the maximum values in the dry matter for total nitrogen (4.4088 g/100g), crude protein (27.5549 g/100g), total phosphorus (0.642 g/100 g), calcium (1.444 g/100g), magnesium (0.732 g/100 g), potassium (7.51 g/100 g), copper (4.4279 mg/100g), manganese (322.668 mg/100g), sodium (1.39 g/100g), iron (194.169 mg/100g) and zinc (3.5836 mg/100g), there was the possibility of using biomass of Eichhornia crassipes for various purposes such as in food animal, products production for human consumption, organic fertilizers, fabrication of brick low cost, and crafts. For all these applications requires a control of the levels of substances in plant tissue. Based on the levels of nutrients and crude protein, the younger plants (0 Month) would be best to have their biomass used. Moreover, one factor that contributes to the use of larger plants (6 Months), the levels of toxic elements which have significantly small or below the detection limit. Therefore, further studies quantifying the biomass produced/m2 at 0 and 6 months are needed for a more correct choice for the best time of harvest

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to analyze the phytoremediation potential of Eichhornia crassipes in natural environments, optimize the extraction process of crude protein from plant tissue and, obtain and characterize this process in order to determine its viability of use instead of the protein sources of animal and/or human feed. For this, it has been determined in Apodi/Mossoró river water the concentration of ammonium ions, nitrite, nitrate, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cádmium, lead, and total chromium; It was determined in plant tissue of aquatic macrophytes of Eichhornia crassipes species present in Apodi/Mossoró River the moisture content, ash, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cadmium, lead, total chromium, total nitrogen and crude protein. It was also determined the translocation factor and bioaccumulation of all the quantified elements; It was developed and optimized the extraction procedure of crude protein based on the isoelectric method and a factorial design 24 with repetition; It was extracted and characterized the extract obtained by determining the moisture content, ash, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, cadmium, total nitrogen and crude protein. And finally, it was also characterized the protein extract using Thermogravimetric Analysis (TG), Derived Thermogravimetric (DTG), Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (FT-IR) and jelly-like electrophoresis of polyacrylamide (SDS -PAGE) to assess the their molecular weights/mass. Thus, from the results obtained for the translocation and bioaccumulation factors was found that the same can be used as phytoremediation agent in natural environments of all quantified elements. It was also found that the developed method of extraction and protein precipitation was satisfactory for the purpose of the work, which gave the best conditions of extraction and precipitation of proteins as: pH extraction equal to 13.0, extraction temperature equals 60 ° C, reaction time equals to 30 minutes, and pH precipitation equals to 4.0. As for the extract obtained, the total nitrogen and crude protein were quantified higher than those found in the plant, increasing the crude protein content approximately 116.88% in relation to the quantified contente in the vegetal tissue of macrophyte. The levels of nickel and cadmium were the unique that were found below the detection limit of used the equipment. The electrophoretic analysis allowed us to observe that the protein extract obtained is composed of low polypeptide chains by the molecular and phytochelatins, with 6 and 15 kDa bands. Analysis of TG, DTG, DSC and FT-IR showed similarities in protein content of the obtained extracts based on different collection points and 9 parts of the plant under study, as well as commercial soy protein and casein. Finally, based on all these findings, it was concluded that the obtained extract in this work can be used instead of the protein sources of animal feed should, before that, test its digestibility. As human supplementation, it is necessary to conduct more tests associated with the optimization process in the sense of removing undesirable components and constant monitoring of the water body and the raw material used

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is located in an area of increasing oil exploration, the region of the Lower Açu is at the mercy of a possible pollution generated by this economic activity, which includes various chemical substances harmful to health, such as metals. This thesis aims to, diagnose the areas of River Piranhas-Açu, a region of the Lower Açu, which are polluted by traces factors and more. In this study, it was determined the concentration of the chemica elements Al, CD, Cr, Cu, Fe, Mn, Ni, P, Pb, V and Zn, through the technique of ICP-OES analysis and the size of sediments and their contents organic matter. Were mapped by GPS, 12 points from collections. The interpretations of the results, together associating that allowed pollution to a possible contamination by oil activity. The results showed tha some regions have low concentrations of cadmium, lead, copper, manganese and zinc unable to promote damage to human health. However, there are places where the concentrations of certain metals chromium, iron and zinc are moderately polluted compared to the results with the reference values of literature and others that are highly polluted by iron. However, due to a greater number of wells in production in those locations, those higher concentrations, it can be suggested a possible influence of oi production in some areas with concentrations of chromium and lead are higher than the rest of the points of monitoring. Moreover, it is observed that the highest levels of metals found in sediment of finer texture and more organic matter content

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The WAT is the temperature at the beginning of the appearance of wax crystals. At this temperature the first wax crystals are formed by the cooling systems paraffin / solvents. Paraffins are composed of a mixture of saturated hydrocarbons of high molecular weight. The removal of petroleum from wells and the production lines means a surcharge on produced oil, thus solubilize these deposits formed due to modifications of thermodynamics has been a constant challenge for companies of oil exploration. This study combines the paraffin solubilization by microemulsion systems, the determination of WAT systems paraffin / solvent and performance of surfactant in reducing the crystallization. We used the methods: rheological and the photoelectric signal, validating the latter which was developed to optimize the data obtained due to sensitivity of the equipment used. Methods developed for description of wax precipitation are often in poor agreement with the experimental data, they tend to underestimate the amount of wax at temperatures below the turbidity point. The Won method and the Ideal solution method were applied to the WAT data obtained in solvent systems, best represented by the second interaction of Won method using the solvents naphtha, hexane and LCO. It was observed that the results obtained by WAT photoelectric signal when compared with the viscosity occur in advance, demonstrating the greatest sensitivity of the method developed. The ionic surfactant reduced the viscosity of the solvent systems as it acted modifying the crystalline structure and, consequently, the pour point. The curves show that the WAT experimental data is, in general, closer to the modeling performed by the method of Won than to the one performed by the ideal solution method, because this method underestimates the curve predicting the onset of paraffin hydrocarbons crystallization temperature. This occurs because the actual temperature measured was the crystallization temperature and the method proposes the fusion temperature measurement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The petroleum production is associated to the produced water, which has dispersed and dissolved materials that damage not only the environment, but also the petroleum processing units. This study aims at the treatment of produced water focusing mainly on the removal of metals and oil and using this treated water as raw material for the production of sodium carbonate. Initially, it was addressed the removal of the following divalent metals: calcium, magnesium, barium, zinc, copper, iron, and cadmium. For this purpose, surfactants derived from vegetable oils, such as coconut oil, soybean oil, and sunflower oil, were used. The investigation showed that there is a stoichiometric relationship between the metals removed from the produced water and the surfactants used in the process of metals removal. It was also developed a model that correlates the hydrolysis constant of saponified coconut oil with the metal distribution between the resulting stages of the proposed process, flocs and aqueous phases, and relating the results with the pH of the medium. The correlation coefficient obtained was 0.963. Next, the process of producing washing soda (prefiro soda ahs ou sodium carbonate) started. The resulting water from the various treatment approaches from petroleum production water was used. During this stage of the research, it was observed that the surfactant assisted in the produced water treatment, by removing some metals and the dispersed oil entirety. The yield of sodium carbonate production was approximately 80%, and its purity was around 95%. It was also assessed, in the production of sodium carbonate, the influence of the type of reactor, using a continuous reactor and a batch reactor. These tests showed that the process with continuous reactor was not as efficient as the batch process. In general, it can be concluded that the production of sodium carbonate from water of oil production is a feasible process, rendering an effluent that causes a great environmental impact a raw material with large scale industrial use

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.