1 resultado para matemáticas aplicadas

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diesel fuel is one of leading petroleum products marketed in Brazil, and has its quality monitored by specialized laboratories linked to the National Agency of Petroleum, Natural Gas and Biofuels - ANP. The main trial evaluating physicochemical properties of diesel are listed in the resolutions ANP Nº 65 of December 9th, 2011 and Nº 45 of December 20th, 2012 that determine the specification limits for each parameter and methodologies of analysis that should be adopted. However the methods used although quite consolidated, require dedicated equipment with high cost of acquisition and maintenance, as well as technical expertise for completion of these trials. Studies for development of more rapid alternative methods and lower cost have been the focus of many researchers. In this same perspective, this work conducted an assessment of the applicability of existing specialized literature on mathematical equations and artificial neural networks (ANN) for the determination of parameters of specification diesel fuel. 162 samples of diesel with a maximum sulfur content of 50, 500 and 1800 ppm, which were analyzed in a specialized laboratory using ASTM methods recommended by the ANP, with a total of 810 trials were used for this study. Experimental results atmospheric distillation (ASTM D86), and density (ASTM D4052) of diesel samples were used as basic input variables to the equations evaluated. The RNAs were applied to predict the flash point, cetane number and sulfur content (S50, S500, S1800), in which were tested network architectures feed-forward backpropagation and generalized regression varying the parameters of the matrix input in order to determine the set of variables and the best type of network for the prediction of variables of interest. The results obtained by the equations and RNAs were compared with experimental results using the nonparametric Wilcoxon test and Student's t test, at a significance level of 5%, as well as the coefficient of determination and percentage error, an error which was obtained 27, 61% for the flash point using a specific equation. The cetane number was obtained by three equations, and both showed good correlation coefficients, especially equation based on aniline point, with the lowest error of 0,816%. ANNs for predicting the flash point and the index cetane showed quite superior results to those observed with the mathematical equations, respectively, with errors of 2,55% and 0,23%. Among the samples with different sulfur contents, the RNAs were better able to predict the S1800 with error of 1,557%. Generally, networks of the type feedforward proved superior to generalized regression.