4 resultados para mark-recapture method

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An organisms movement within and between habitats is an essential trait of life history, one that shapes population dynamics, communities and ecosystems in space and time. Since the ability to perceive and react to specific conditions varies greatly between organisms, different movement patterns are generated. These, in turn, will reflect the way species persist in the original habitat and surrounding patches. This study evaluated patterns of movement of frugivorous butterflies in order to estimate the connectivity of a landscape mosaic in an area of Atlantic Forest. For this purpose, we used the capture-mark-recapture method on butterflies trapped with fermented fruit bait in three distinct habitats. The first represents a typical Atlantic forest fragment, while the other two represent man-made matrix habitats. One contains a coconut plantation and the other a plantation of the exotic Acacia mangium species. Five traps were randomly placed in each landscape unit in areas of 40 x 40m. Using recapture data and relating it to distance between captures and habitat structure, I found that movement frequencies, both within and between landscape units were different for the analyzed species, suggesting that they do not interpret and react to the landscape in the same way. Thus this study was able to measure landscape functional connectivity. For most species, the exchange between forest and coconut plantations occurred with low frequency compared to exchanges between the forest and acacia plantations, which share more structural similarities. This seems to indicate that a matrix that is more similar to patches of native vegetation can shelter species, permit their movement and, consequently, contribute to the landscape connectivity

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For a long time, we believed in the pattern that tropical and south hemisphere species have high survival. Nowadays results began to contradict this pattern, indicating the need for further studies. Despite the advanced state of the study of bird population parameters, little is known about their variation throughout the year and the factors affecting them. Reproduction, for example, is one factor that may alter adult survival rates, because during this process the breeding pair allocates resources to maintain itself to maintain offspring, making itself more susceptible to diseases and predation. The aim of this study was to estimate survival and population size of a Central and South America passerine, Tachyphonus rufus (Boddaert, 1783), testing hypotheses about the factors that define these parameters. We performed data collection between Nov/2010 and ago/2012 in 12 ha plot, in a fragment of Atlantic Forest in northeastern Brazil. We used capture-mark-recapture methods to generate estimates using Closed Design Robust model in the program MARK. We generated Multi-state models to test some assumptions inherent to Closed Robust Design. The influence of co-variables (time, rain and reproductive cycle) and the effect of transient individuals were measured. Capture, recapture and apparent survival parameters were defined by reproductive cycle, while temporary dispersal was influence by rain. The estimates showed a higher apparent survival during the non-breeding period (92% ± 1%) than during breeding (40% ± 9%), revealing a cost of reproduction and suggesting a trade-off between surviving and reproducing. The low annual survival observed (34%) did not corroborate the pattern of high rates expected for a tropical bird. The largest population size was estimated to be 56 individuals in Nov/11, explained by high recruitment of juveniles, while the lowest observed in May/12: 10 individuals, probably as a result of massive influx of competitor species. Results from this study add to the growing literature on life history of Neotropical species. We encourage studies like this especially in Brazil, where there are few information, and suggest that covariates related to habitat quality and environmental changes should be tested, so that we can generate increasingly reliable models

Relevância:

80.00% 80.00%

Publicador:

Resumo:

(The Mark and Recapture Network: a Heliconius case study). The current pace of habitat destruction, especially in tropical landscapes, has increased the need for understanding minimum patch requirements and patch distance as tools for conserving species in forest remnants. Mark recapture and tagging studies have been instrumental in providing parameters for functional models. Because of their popularity, ease of manipulation and well known biology, butterflies have become model in studies of spatial structure. Yet, most studies on butterflies movement have focused on temperate species that live in open habitats, in which forest patches are barrier to movement. This study aimed to view and review data from mark-recapture as a network in two species of butterfly (Heliconius erato and Heliconius melpomene). A work of marking and recapture of the species was carried out in an Atlantic forest reserve located about 20km from the city of Natal (RN). Mark recapture studies were conducted in 3 weekly visits during January-February and July-August in 2007 and 2008. Captures were more common in two sections of the dirt road, with minimal collection in the forest trail. The spatial spread of captures was similar in the two species. Yet, distances between recaptures seem to be greater for Heliconius erato than for Heliconius melpomene. In addition, the erato network is more disconnected, suggesting that this specie has shorter traveling patches. Moving on to the network, both species have similar number of links (N) and unweighed vertices (L). However, melpomene has a weighed network 50% more connections than erato. These network metrics suggest that erato has more compartmentalized network and restricted movement than melpomene. Thus, erato has a larger number of disconnected components, nC, in the network, and a smaller network diameter. The frequency distribution of network connectivity for both species was better explained by a Power-law than by a random, Poissom distribution, showing that the Power-law provides a better fit than the Poisson for both species. Moreover, the Powerlaw erato is much better adjusted than in melpomene, which should be linked to the small movements that erato makes in the network