5 resultados para maintaining and augmenting Plant design
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Global society and technology have changed the relationships of the market. Quality and cost are not the main aspects of any industrial product. On the other hand, design, innovation and sustainability became significant requirements to company’s competitiveness. In this context, the design approach has shown evolutions, integrating social and environmental aspects beside traditional aspects such as technical and economic. Still, design has been becoming a strategic opportunity for companies, improving their competitiveness and increasing their market share. Thus, this research has analyzed the integration of both the Sustainable Design and Strategic Design Coaching (SDC) method in the making decision activities of companies. A cement company (BQMIL) was assigned as case study, in which the previous results have pointed out the significant hole of those concepts to generate Eco-innovation and Eco-Brand to increase its market share, corroborating the expectative of the design team
Resumo:
Proteinases are enzymes distributed widely founded in several organisms and perform many different functions, from maintaining homeostasis to the worsening of some diseases such as cancer, autoimmune diseases and infections. The proteins responsible of controlling the action of these enzymes are the inhibitors, that are classified based on their target proteases and are founded since simple organisms, such as bacteria, to higher organisms, such as larger plants and mammals. Plant proteinase inhibitors act by reducing or inactivating the activity of target proteases, thus, these proteins have been studied as potential tools in the treatment of diseases related to protease activities. In this context, an inhibitor of chymotrypsin from Erythrina velutina, called EvCI was previously purified and it was observed that this protein plays in vitro anticoagulant activity and anti-inflammatory activity in in vivo model. Aiming to reduce the environmental impact caused by the purification EvCI in high amounts and to facilitate the process of obtaining this protein, the recombinant chymotrypsin inhibitor from Eryhrina velutina was produced after cloning and expression in Escherichia coli. The bacteria were grown in LB medium and after induction of the expression this material was subjected to procedures for cell lysis and the product was applied on Nickel-affinity column. The proteins adsorbed were digested by thrombin and applied on Chymotrypsin-Sepharose affinity column, obtaining the purified inhibitor, named recEvCI. After electrophoresis, the recombinant inhibitor showed an approximately molecular mass of 17 kDa, and reduced the chymotrypsin and elastase activities in vitro. The recombinant inhibitor was sequenced and was found similar amino acids residues when compared to other inhibitors deposited in the database, with some modifications. recEvCI showed high stability under pH variations and reducing conditions, maintaining its activity around 80%. This protein increased the blood coagulation time in vitro by acting on the intrinsic pathway and did not show cytotoxicity against strains of mouse 3T3 fibroblasts and RAW 264.7 macrophages. recEvCI showed microbicide activity related to release of nitric oxide and consequently the activation of macrophages, futhermore having proinflammatory effects assessed by increased release of TNF-α. These results indicate that recEvCI can be biotechnologically used as a new tool in the control of coagulation-related diseases as well as can be an activating agent of the immune system in immunosuppressed individuals
Resumo:
This work presents the design and construction of an X-Y table of two degrees of freedom, as well as the development of a fuzzy system for its position and trajectory control. The table is composed of two bases that move perpendicularly to each other in the horizontal plane, and are driven by two DC motors. Base position is detected by position sensors attached to the motor axes. A data acquisition board performs the interface between a laptop and the plant. The fuzzy system algorithm was implemented in LabVIEW® programming environment that processes the sensors signals and determines the control variables values that drive the motors. Experimental results using position reference signals (step type signal) and straight and circular paths reference signals are presented to demonstrate the dynamic behavior of fuzzy system
Resumo:
This study aimed to analyze the phytoremediation potential of Eichhornia crassipes in natural environments, optimize the extraction process of crude protein from plant tissue and, obtain and characterize this process in order to determine its viability of use instead of the protein sources of animal and/or human feed. For this, it has been determined in Apodi/Mossoró river water the concentration of ammonium ions, nitrite, nitrate, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cádmium, lead, and total chromium; It was determined in plant tissue of aquatic macrophytes of Eichhornia crassipes species present in Apodi/Mossoró River the moisture content, ash, calcium, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, aluminum, cadmium, lead, total chromium, total nitrogen and crude protein. It was also determined the translocation factor and bioaccumulation of all the quantified elements; It was developed and optimized the extraction procedure of crude protein based on the isoelectric method and a factorial design 24 with repetition; It was extracted and characterized the extract obtained by determining the moisture content, ash, magnesium, potassium, iron, copper, manganese, zinc, nickel, cobalt, sodium, cadmium, total nitrogen and crude protein. And finally, it was also characterized the protein extract using Thermogravimetric Analysis (TG), Derived Thermogravimetric (DTG), Differential Scanning Calorimetry (DSC), Infrared Spectroscopy (FT-IR) and jelly-like electrophoresis of polyacrylamide (SDS -PAGE) to assess the their molecular weights/mass. Thus, from the results obtained for the translocation and bioaccumulation factors was found that the same can be used as phytoremediation agent in natural environments of all quantified elements. It was also found that the developed method of extraction and protein precipitation was satisfactory for the purpose of the work, which gave the best conditions of extraction and precipitation of proteins as: pH extraction equal to 13.0, extraction temperature equals 60 ° C, reaction time equals to 30 minutes, and pH precipitation equals to 4.0. As for the extract obtained, the total nitrogen and crude protein were quantified higher than those found in the plant, increasing the crude protein content approximately 116.88% in relation to the quantified contente in the vegetal tissue of macrophyte. The levels of nickel and cadmium were the unique that were found below the detection limit of used the equipment. The electrophoretic analysis allowed us to observe that the protein extract obtained is composed of low polypeptide chains by the molecular and phytochelatins, with 6 and 15 kDa bands. Analysis of TG, DTG, DSC and FT-IR showed similarities in protein content of the obtained extracts based on different collection points and 9 parts of the plant under study, as well as commercial soy protein and casein. Finally, based on all these findings, it was concluded that the obtained extract in this work can be used instead of the protein sources of animal feed should, before that, test its digestibility. As human supplementation, it is necessary to conduct more tests associated with the optimization process in the sense of removing undesirable components and constant monitoring of the water body and the raw material used
Resumo:
About 40% of the earth is occupied by tropical and subtropical forests, including 42% of dry forests, where there is Caatinga Bioma, contemplating tree forests and shrubs, with xerophytic characteristics. Study and conservations of Caatinga biologic diversity is one of the greatest challenges of Brazilian science because those are, proportionally, the less studied among natural areas, with most of the scientific effort centered in very few points around the main cities in the area and also because it is the less protected natural Brazilian area. The environmental degradation is constantly increasing and has its rhythm accelerated by the men appropriation to meet or not their own needs. Therefore, species conservation should be based in three principles: the use of natural resources by present generation, waste prevention and use of the natural resources to benefit the majority of the citizens. Among the strategies to species conservation, we can mention the ex situ conservation , in which the conservation of genetic resources may be realized outside of the natural environment in which the species occur, and in situ conservation , or, in other words, in the places where the species occur. In ex situ conservation, the germplasm collections are maintained in the field and/or in laboratories (conservation chambers), and this mainly conserves intraspecific diversity (genetic variance), the ex situ collections are continuously enriched by collection activities, introduction and germplasm interchange; the in situ conservation preserving ecosystems and habitats, maintaining and recovering native population of species of interest. So, the objective of this paper is the search for strategies to the conservation of Mimosa caesalpiniifolia B. (sabiá) using instruments of environmental perception and plant biotechnology, as mechanisms of in situ and ex situ conservation. To environmental perception, were realized open, semi-structured and qualitative interviews. The questions included socioeconomic data and knowledge of Sabiá specie. To plant biotechnology, Sabiá seed collection were realized in different location to formation of a germplasm bank. The specie micropropagation was made from nodal segment of plants from the matrizeiro. About the knowledge of rural populations and the use of Sabiá plant, some preferences occurred from speeches that the plant possesses a firm wood, not attacked by termites, legalized for exploration by the Brazilian environmental organ (IBAMA), and is a native specie. This research found the rural population has knowledge about Sabiá specie and the natural resources are exhausting. The proposal that the rural community brought was the donation of the Sabiá specie seeding initiating on the rain season, in which the seeding would be plated between the lots, in individual plantations. To the formation of a matrix bank, plant biothecnology brought answers favorable to Sabiá specie seeding, with the formation of multiple shoots