3 resultados para macrofauna
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The soil macrofauna is influenced to several biotic and abiotic environmental factors, from changes in the physical environment to a variety of interactions among the species involved, affecting the patterns of biodiversity of soil fauna. The power and specificity of the mechanisms that act on soil organisms vary greatly depending on environmental conditions at different scales of space and time. The Caatinga has great spatial heterogeneity of vegetation, climate and soil, so the soil macrofauna would follow this local spatial variation in the environment? This study aimed to investigate the effects of local environmental variables on biological parameters (taxa richness, total abundance and biomass) of soil macrofauna in a fragment of caatinga in João Câmara, Rio Grande Norte, Northeast Brazil. The study was conducted in the Cauaçu farm, where a grid of 2000m x 500m was drawn, and later, 30 sampling points were randomly selected. The methodology used to collect the macrofauna was the TSBF method. We tested the effects of 10 environmental variables on macrofauna across the plots and across the layers of soil. The hypothesis that macrofauna soil responds to changes in the environment was not supported throughout the plots, but was confirmed to soil layers. The soil macrofauna shows a pattern of concentration in the surface layer and decreases considerably in the deeper layers. This pattern had significant and positive relationship with the aerial plant biomass and fine root stock. The aerial plant biomass releases plant necromass that accumulates in the surface layer, providing an important source of resource and shelter for soil macrofauna, explaining their greater abundance in this layer. The roots are used as a means for the arrival of nutrients to the soil from the primary production, thus a greater amount of root conditions higher food intake for macrofauna, especially the herbivores
Resumo:
This study aimed to characterize, for the first time, the benthic invertebrates that inhabit the region of soft bottoms adjacent to the APARC reefs in order to situate them as an important component of infralittoral coastal areas of Northeast Brazil. Soft bottoms areas of APARC corresponds to infralittoral zones vegetated by seagrass Halodule wrightii and unvegetated infralittoral zones, both subjected to substantial hydrodynamic stress. Through scuba diving, biological and sedimentary samples of both habitats were analyzed, with a cylindrical sampler. We identified 6160 individuals belonging to 16 groups and 224 species. The most abundant macrofaunal group was Polychaeta (43%), followed by Mollusca (25%) and Crustacea (14%), what was expected for these environments. In the first chapter, regarding vegetated areas, we tested three hypotheses: the existence of differences in the faunal structure associated with H. wrightii banks submitted to different hydrodynamic conditions; the occurrence of minor temporal variations on the associated macrofauna of banks protected from hydrodynamic stress; and if the diversity of macrofauna is affected by both benthophagous predators and H. wrightii biomass. It was observed that macrofauna associated at the Exposed bank showed differences in structure when comparing the Protected bank, the granulometry of the sediments, that co-varies with the hydrodynamism, was the cause of these variations. The results also pointed to a lower temporal variation in the macrofaunal structure on the Protected bank and a negative relation between macrofaunal and benthophagous fish abundance. At the Exposed bank, a greater faunal diversity was observed, probably due to the higher seagrass biomass. The second chapter compares the vegetated and non-vegetated areas in order to test the hypothesis that due to greater seasonal stability in tropical environments, seagrass structure would act to distinguish the vegetated and non-vegetated areas macrofauna, over time. It was also expected that depositivores were the most representative invertebrates on non-vegetated environments, on the assumption that the seagrass bank would work as a source of debris to adjacent areas, enriching them. Considering all sampling periods, the total macrofauna abundance and diversity were higher in vegetated areas, when compared to non-vegetated ones. Seasonally, the structural complexity provided by Halodule differentiated more clearly the fauna from vegetated and non-vegetated areas, but only at the climatic extremes, i.e. Dry season (extreme climatic stability, with low hydronamism variation) and Rainy season (great hydrodynamism variation and probably vegetated bank burial). Furthermore, the high organic matter levels measured in the sandy banks coincided with an outstanding trophic importance of deposit feeders, proving the debris-carrying hypothesis. The last chapter focused on the non-vegetated areas, where we tested that the hypothesis infaunal halo in tropical reefs depending on local granulometry. In this context, we also tested the hypothesis that benthophagous fish predation would have an effect on the low abundance of macrofaunal groups due to the high hydrographic stress, thus allowing other predatory groups to have greater importance in these environments. Proving the hypothesis, no spatial variation, both on abundance families neither on community structure, occur along distance of the edge reefs. However, we found that complex combinations of physical factors (grain size and organic matter levels originated from local hydronamic conditions) covary with the distance from the reefs and has stronger influence on macrofauna than considered biological factors, such as predation by benthophagous fishes. Based on the main results, this study shows that unconsolidated areas around APARC reefs are noteworthy from an ecological and conservational point of view, as evidenced by the biota-environment and organismal relations, never before described for these areas
Resumo:
Decapod crustaceans are one of the most important portions of megafaunal of coastal waters, playing a role as modifier of the environment and controlling populations of other organisms. Among the Decapoda, crab (brachyuran) constitutes the dominant macrofauna of mangroves. Among brachyuran is the mangrove crab (Ucides cordatus, Linnaeus, 1763), which represents the main component of the macrofauna of mangroves, particularly in Northern and Northeastern Brazil. In Brazil, its distribution is known from the state of Amapá to the north of Santa Catarina. This species is distinguished by its economic importance, being one of the main fishing resources in Brazil, generating a significant impact on their natural populations. This reduction would result in loss of value to the product, preventing its commercialization. Although it´s great ecological and economic importance, there are few articles about the biological aspects of U. cordatus, mainly in the state of Rio Grande do Norte. This work aimed to study the population dynamics of the mangrove crab, Ucides cordatus (Linnaeus, 1763), in Conchas estuary, Porto do Mangue, northern coast of Rio Grande do Norte. During the period November 2009 to October 2010 the crabs were collected monthly, obeying predetermined lunar periods (new moon or full moon) in a mangrove area in Porto do Mangue - RN. With the aid of a steel caliper (0.01 mm) and a precision balance (0.01 g) were measured biometric variables related to the animal's carapace, major propodus chela, width of abdomen (female), length of gonopodium ( males) and total weight. In addition, it was recorded, the gonads and molt stages, for males and females. In total, 476 crabs were collected, with 338 males and 138 females. Males were larger, heavier and in greater proportion than females. The reproductive period for the species in this location was limited during the months November to May, suggesting a change in current environmental legislation for the closure period. Synchrony was observed between the morphological and physiological maturity with females maturing earlier, possibly, a reproductive strategy adopted, compared to the low fishing pressure in the area. The molting period occurred in the dry season peaking in October. The analysis of growth, based on the parameters of von Bertalanffy was calculated using the nonlinear fit using modes (AJMOD). High growth rates for both males (L = 7.54 cm, k = 0.95, t0 =- 00:08; tmax = 4.84) and females (L = 6.50, k = 1 , 2, t0 =- 0008; tmax = 3.28) were found, contrasting with data from the literature, using other techniques. Males had higher asymptotic width size and longevity, but a lower growth constant when compared with females. The estimated age, for males and females, reaching the minimum capture size was 1.82 years and 1.63 years respectively. The size of physiological maturity, when individuals are able to reproduce, was estimated at 1.4 years and 1.05 years, for males and females, respectively. The recruitment period for this species is seasonal, with two peaks of occurrence, one in the rainy season and one in the dry season. This work represented the first effort on understanding the ecology of the mangrove crab, to the northern coast of Rio Grande do Norte. However, further studies on its biology should be undertaken, especially those related to growth, and recruitment, where observed that literature is more scarce