2 resultados para loosely coupled networks

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents an optimization technique based on structural topology optimization methods, TOM, designed to solve problems of thermoelasticity 3D. The presented approach is based on the adjoint method of sensitivity analysis unified design and is intended to loosely coupled thermomechanical problems. The technique makes use of analytical expressions of sensitivities, enabling a reduction in the computational cost through the use of a coupled field adjoint equation, defined in terms the of temperature and displacement fields. The TOM used is based on the material aproach. Thus, to make the domain is composed of a continuous distribution of material, enabling the use of classical models in nonlinear programming optimization problem, the microstructure is considered as a porous medium and its constitutive equation is a function only of the homogenized relative density of the material. In this approach, the actual properties of materials with intermediate densities are penalized based on an artificial microstructure model based on the SIMP (Solid Isotropic Material with Penalty). To circumvent problems chessboard and reduce dependence on layout in relation to the final optimal initial mesh, caused by problems of numerical instability, restrictions on components of the gradient of relative densities were applied. The optimization problem is solved by applying the augmented Lagrangian method, the solution being obtained by applying the finite element method of Galerkin, the process of approximation using the finite element Tetra4. This element has the ability to interpolate both the relative density and the displacement components and temperature. As for the definition of the problem, the heat load is assumed in steady state, i.e., the effects of conduction and convection of heat does not vary with time. The mechanical load is assumed static and distributed

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Web services are loosely coupled applications that use XML documents as a way of integrating distinct systems on the internet. Such documents are used by in standards such as SOAP, WSDL and UDDI which establish, respectively, integrated patterns for the representation of messages, description, and publication of services, thus facilitating the interoperability between heterogeneous systems. Often one single service does not meet the users needs, therefore new systems can be designed from the composition of two or more services. This which is the design goal behind the of the Service Oriented Architecture. Parallel to this scenario, we have the PEWS (Predicate Path-Expressions for Web Services) language, which speci es behavioural speci cations of composite web service interfaces.. The development of the PEWS language is divided into two parts: front-end and back-end. From a PEWS program, the front-end performs the lexical analysis, syntactic and semantic compositions and nally generate XML code. The function of the back-end is to execute the composition PEWS. This master's dissertation work aims to: (i) reformulate the proposed architecture for the runtime system of the language, (ii) Implement the back-end for PEWS by using .NET Framework tools to execute PEWS programs using the Windows Work ow Foundation