3 resultados para leaf-to-air vapor pressure deficit
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Crude oil is a complex liquid mixture of organic and inorganic compounds that are dominated by hydrocarbons. It is a mixture of alkanes from the simplest to more complex aromatic compounds that are present derivatives such as gasoline, diesel, alcohol, kerosene, naphtha, etc.. These derivatives are extracted from any oil, however, only with a very high quality, in other words, when the content of hydrocarbons of low molecular weight is high means that production of these compounds is feasible. The American Petroleum Institute (API) developed a classification system for the various types of oil. In Brazil, the quality of most of the oil taken from wells is very low, so it is necessary to generate new technology to develop best practices for refining in order to produce petroleum products of higher commercial value. Therefore, it is necessary to study the thermodynamic equilibrium properties of its derivative compounds of interest. This dissertation aims to determine vapor-liquid equilibrium (VLE) data for the systems Phenilcyclohexane - CO2, and Cyclohexane - Phenilcyclohexane - CO2 at high pressure and temperatures between 30 to 70oC. Furthermore, comparisons between measured VLE experimental data from this work and from the literature in relation to the Peng- Robinson molecular thermodynamic model, using a simulation program SPECS IVCSEP v5.60 and two adjustable interaction parameters, have been performed for modeling and simulation purposes. Finally, the developed apparatus for determination of phase equilibrium data at high pressures is presented
Resumo:
Anhydrous ethanol is used in chemical, pharmaceutical and fuel industries. However, current processes for obtaining it involve high cost, high energy demand and use of toxic and pollutant solvents. This problem occurs due to the formation of an azeotropic mixture of ethanol + water, which does not allow the complete separation by conventional methods such as simple distillation. As an alternative to currently used processes, this study proposes the use of ionic liquids as solvents in extractive distillation. These are organic salts which are liquids at low temperatures (under 373,15 K). They exhibit characteristics such as low volatility (almost zero/ low vapor ), thermal stability and low corrosiveness, which make them interesting for applications such as catalysts and as entrainers. In this work, experimental data for the vapor pressure of pure ethanol and water in the pressure range of 20 to 101 kPa were obtained as well as for vapor-liquid equilibrium (VLE) of the system ethanol + water at atmospheric pressure; and equilibrium data of ethanol + water + 2-HDEAA (2- hydroxydiethanolamine acetate) at strategic points in the diagram. The device used for these experiments was the Fischer ebulliometer, together with density measurements to determine phase compositions. The experimental data were consistent with literature data and presented thermodynamic consistency, thus the methodology was properly validated. The results were favorable, with the increase of ethanol concentration in the vapor phase, but the increase was not shown to be pronounced. The predictive model COSMO-SAC (COnductor-like Screening MOdels Segment Activity Coefficient) proposed by Lin & Sandler (2002) was studied for calculations to predict vapor-liquid equilibrium of systems ethanol + water + ionic liquids at atmospheric pressure. This is an alternative for predicting phase equilibrium, especially for substances of recent interest, such as ionic liquids. This is so because no experimental data nor any parameters of functional groups (as in the UNIFAC method) are needed
Resumo:
Bioidentical hormones are defined as compounds that have exactly the same chemical and molecular structure as hormones that are produced in the human body. It is believed that the use of hormones may be safer and more effective than the non-bioidentical hormones, because binding to receptors in the organism would be similar to the endogenous hormone. Bioidentical estrogens have been used in menopausal women, as an alternative to traditional hormone replacement therapy. Thermal data of these hormones are scarce in literature. Thermal analysis comprises a group of techniques that allows evaluating the physical-chemistry properties of a drug, while the drug is subjected to a controlled temperature programming. The thermal techniques are used in pharmaceutical studies for characterization of drugs, purity determination, polymorphism identification, compatibility and evaluation of stability. This study aims to characterize the bioidentical hormones estradiol and estriol through thermal techniques TG/DTG, DTA, DSC, DSC-photovisual. By the TG curves analysis was possible to calculated kinetic parameters for the samples. The kinetic data showed that there is good correlation in the different models used. For both estradiol and estriol, was found zero order reaction, which enabled the construction of the vapor pressure curves. Data from DTA and DSC curves of melting point and purity are the same of literature, showed relation with DSC-photovisual results. The analysis DTA curves showed the fusion event had the best linearity for both hormones. In the evaluation of possible degradation products, the analysis of the infrared shows no degradation products in the solid state