45 resultados para isotherms of adsorption
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order
Resumo:
In this work it was synthesized and characterized the cobalt ferrite (CoFe2O4) by two methods: complexation combining EDTA/Citrate and hydrothermal investigating the influence of the synthesis conditions on phase formation and on the crystallite size. The powders were mainly characterized by x-ray diffraction. In specific cases, it was also used scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), x-ray fluorescence (XRF) and isotherms of adsorption and desorption of nitrogen (BET method). The study of the crystallite size was based on the interpretation of x-ray diffractograms obtained and estimated by the method of Halder-Wagner-Scherrer and Langford. An experimental design was made in order to assist in quantifying the influence of synthesis conditions on the response variables. The synthesis parameters evaluated in this study were: pH of the reaction medium (8, 9 and 10), the calcination temperature (combined complexation method EDTA/Citrate 600°C, 800°C and 1000°C), synthesis temperature (hydrothermal method 120°C, 140°C and 160°C), calcination time (combined complexation method EDTA/Citrate - 2, 4 and 6 hours) and time of synthesis (hydrothermal method 6, 15 and 24 hours). By the hydrothermal method was possible to produce mesoporous powders with high purity, with an average crystallite size up to 7 nm, with a surface area of 113.44 m²/g in the form of pellets with irregular morphology. By using the method of combined complexation EDTA/Citrate, mesoporous powders were produced with greater purity, crystallite size up to 22nm and 27.95 m²/g of surface area in the form of pellets with a regular morphology of plaques. In the experimental design was found that the hydrothermal method to all the studied parameters (pH, temperature and time) have significant effect on the crystallite size, while to the combined complexation method EDTA/Citrate, only temperature and time were significant
Resumo:
The destructive impact of improper disposal of heavy metals in the environment increases as a direct result of population explosion, urbanization and industrial expansion and technological developments. Argil are potential materials for adsorption of inorganic and the pelletization of it is required for use in adsorptive columns of fixed bed. The low cost and the possibility of regeneration makes these materials attractive for use in the purification process, capable of removing inorganic compounds in contaminated aquatic environments. In this work was made pellets of a mixture of dolomite and montmorillonite by wet agglomeration, in different percentages. The removal of Pb (II) was investigated through experimental studies, and was modeled by kinetic models and isotherms of adsorption. The materials were characterized using the techniques of XRD, TG / DTA, FT-IR, and surface area by BET method. The results showed the adsorption efficiency of the contaminant by the composite material studied in synthetic solution. The study found that the adsorption follows the Langmuir model, and the kinetics of adsorption follows the model of pseudosecond order
Resumo:
This work presents studies related to the use of microemulsions in the solubilization of heavy crude oil fractions responsible by the formation of deposits. The first stage of the work was addressed to the construction of phases diagrams, with the intention of determining the area within which the microemulsion is formed. The following systems were studied: UNITOL L 90 n-Butanol - Water - Kerosene (system 1); UNITOL L 90 - n-Butanol - Water - Xylene (system 2); UNITOL L 90 n-Butanol - Water - Kerosene/Xylene 10% (system 3); UNITOL L 90 - Sec-Butanol - Water - Xylene (system 4). In parallel experiments of physical adsorption were carried out by the static method, with the intention of simulating natural conditions of reservoirs. Crude oil of the Fazenda Belém field (Rio Grande do Norte), was used as solute, xylene as solvent and the Assu sandstone (Rio Grande do Norte, Brazil) and Botucatu sandstone (Paraná, Brazil) as rock reservoirs. The curves of adsorption presented the S format type, in agreement with the classification proposed by Giles, Smith and Huitson (1974). The solubilization process was accomplished in the batch method, by varying the time of agitation, the microemulsions and the solid/solution ratio. The experiments showed that the microemulsions presented high efficiency in the solubilization of the crude oil adsorbed on the sandstones. System 2 presented an efficiency of 99% for the Assu sandstone and 97% for the Botucatu sandstone
Resumo:
Actually, surveys have been developed for obtaining new materials and methodologies that aim to minimize environmental problems due to discharges of industrial effluents contaminated with heavy metals. The adsorption has been used as an alternative technology effectively, economically viable and potentially important for the reduction of metals, especially when using natural adsorbents such as certain types of clay. Chitosan, a polymer of natural origin, present in the shells of crustaceans and insects, has also been used for this purpose. Among the clays, vermiculite is distinguished by its good ion exchange capacity and in its expanded form enhances its properties by greatly increasing its specific surface. This study aimed to evaluate the functionality of the hybrid material obtained through the modification of expanded vermiculite with chitosan in the removal of lead ions (II) in aqueous solution. The material was characterized by infrared spectroscopy (IR) in order to evaluate the efficiency of modification of matrix, the vermiculite, the organic material, chitosan. The thermal stability of the material and the ratio clay / polymer was evaluated by thermogravimetry. To evaluate the surface of the material was used in scanning electron microscopy (SEM) and (BET). The BET analysis revealed a significant increase in surface area of vermiculite that after interaction with chitosan, was obtained a value of 21, 6156 m2 / g. Adsorption tests were performed according to the particle size, concentration and time. The results show that the capacity of removal of ions through the vermiculite was on average 88.4% for lead in concentrations ranging from 20-200 mg / L and 64.2% in the concentration range of 1000 mg / L. Regarding the particle size, there was an increase in adsorption with decreasing particle size. In fuction to the time of contact, was observed adsorption equilibrium in 60 minutes with adsorption capacity. The data of the isotherms were fitted to equation Freundlich. The kinetic study of adsorption showed that the pseudo second- order model best describes the adsorption adsorption, having been found following values K2=0,024 g. mg-1 min-1and Qmax=25,75 mg/g, value very close to the calculated Qe = 26.31 mg / g. From the results we can conclude that the material can be used in wastewater treatment systems as a source of metal ions adsorbent due to its high adsorption capacity
Resumo:
The phenomenon of adsorption is of fundamental importance for the treatment of textile effluents and removal of dyes. Chitosan is characterized as an excellent adsorbent material, not only for its adsorption capacity but also the low cost production. Equilibrium and kinetic studies were developed in this study to describe the mechanism of adsorption of the anionic azo dye Orange G in chitosan, with the isotherms obtained from the variation of the concentration of dye in the continuous phase. The kinetics of the process was analyzed based on models involving the adsorption of molecules of the dye in nonpolar and polar sites. Adsorption experiments were carried out in water and in saline media with different NaCl concentrations, both for the determination of the equilibrium time as isotherms for making kinetic curves in which the amount of dye adsorbed measured indirectly varied with time. The experiments revealed the opening of the biopolymer structure with increasing concentration of Orange G, accompanied by high pH values and change on the type of interaction between the dye and the adsorbent surface, suggesting behavior advocated by the Langmuir equation in a certain range of concentration of the adsorbate and following the Henry's Law at higher concentrations, from the increased number of sites available for adsorption. The studies conducted showed that the saline medium reduces the chitosan s adsorption capacity according to a certain concentration, the occurrence of the cooperative adsorption process steps kinetic mechanism suggested as a new alternative for the interpretation of the phenomenon
Resumo:
Among the polymers that stand out most in recent decades, chitosan, a biopolymer with physico-chemical and biological promising properties has been the subject of a broad field of research. Chitosan comes as a great choice in the field of adsorption, due to their adsorbents properties, low cost and abundance. The presence of amino groups in its chain govern the majority of their properties and define which application a sample of chitosan may be used, so it is essential to determine their average degree of deacetylation. In this work we developed kinetic and equilibrium studies to monitor and characterize the adsorption process of two drugs, tetracycline hydrochloride and sodium cromoglycate, in chitosan particles. Kinetic models and the adsorption isotherms were applied to the experimental data. For both studies, the zeta potential analyzes were also performed. The adsorption of each drug showed distinct aspects. Through the studies developed in this work was possible to describe a kinetic model for the adsorption of tetracycline on chitosan particles, thus demonstrating that it can be described by two kinetics of adsorption, one for protonated tetracycline and another one for unprotonated tetracycline. In the adsorption of sodium cromoglycate on chitosan particles, equilibrium studies were developed at different temperatures, allowing the determination of thermodynamic parameters
Resumo:
Due to its physico-chemical and biological properties, related to the abundance and low cost of raw material, chitosan has been recognized as a material of wide application in various fields, such as in drug delivery systems. Many of these properties are associated with the presence of amino groups in its polymer chain. A proper determination of these amino groups is very important, in order to properly specify if a given chitosan sample can be used in a particular application. Thus, in this work, initially, a comparison between the determination of the deacetylation degree by conductometry and elemental analysis was carried out using a detailed analysis of error propagation. It was shown that the conductometric analysis resulted in a simple and safe method for the determining the degree of deacetylation of chitosan. Subsequently, experiments were performed to monitor and characterize the adsorption of tetracycline on chitosan particles through kinetic and equilibrium studies. The main models of kinetics and adsorption isotherms, widely used to describe the adsorption on wastewater treatment systems and the drug loading, were used to treat the experimental data. Firstly, it was shown that an apparent linear t/q(t) × t relationship did not imply in a pseudo-second-order adsorption kinetics, differently of what has been repeatedly reported in the literature. It was found that this misinterpretation can be avoided by using non-linear regression. Finally, the adsorption of tetracycline on chitosan particles was analyzed using insights obtained from theoretical analysis, and the parameters generated were used to analyze the kinetics of adsorption, the isotherm of adsorption and to ropose a mechanism of adsorption
Resumo:
Corrosion usually occurs in pipelines, so that it is necessary to develop new surface treatments to control it. Surfactants have played an outstanding role in this field due to its capacity of adsorbing on metal surfaces, resulting in interfaces with structures that protect the metal at low surfactant concentrations. The appearance of new surfactants is a contribution to the area, as they increase the possibility of corrosion control at specific conditions that a particular oil field presents. The aim of this work is to synthesize the surfactants sodium 12 hydroxyocadecenoate (SAR), sodium 9,10-epoxy-12 hydroxyocadecanoate (SEAR), and sodium 9,10:12,13-diepoxy-octadecanoate (SEAL) and apply them as corrosion inhibitors, studying their action in environments with different salinities and at different temperatures. The conditions used in this work were chosen in order to reproduce oil field reality. The study of the micellization of these surfactants in the liquid-gas interface was carried out using surface tensiometry. It was observed that cmc increased as salt concentration was increased, and temperature and pH were decreased, while cmc decreased with the addition of two epoxy groups in the molecule. Using the values of cmc and the Gibbs equation, the values of Gibbs free energy of adsorption, area per adsorbed molecule, and surface excess were calculated. The surface excess increases as salt concentration and temperature decreases, increasing as pH is increased. The area per adsorbed molecule and the free energy of adsorption decrease with salt concentration, temperature, and pH increase. SAXS results showed that the addition of epoxy group in surfactant structure results in a decrease in the repulsion between the micelles, favoring the formation of more oblong micellar structures, ensuring a better efficiency of metal coverage. The increase in salt and surfactant concentrations provides an increase in micellar diameter. It was shown that the increase in temperature does not influence micellar structure, indicating thermal stability that is advantageous for use as corrosion inhibitor. The results of inhibition efficiency for the surfactants SEAR and SEAL were considered the best ones. Above cmc, adsorption occurred by the migration of micelles from the bulk of the solution to the metal surface, while at concentrations below cmc film formation must be due to the adsorption of semi-micellar and monomeric structures, certainly due to the presence of the epoxy group, which allows side interactions of the molecule with the metal surface. The metal resistance to corrosion presented values of 90% of efficiency. The application of Langmuir and Frumkin isotherms showed that the later gives a better description of adsorption because the model takes into account side interactions from the adsorbing molecules. Wettability results showed that micelle formation on the solid surface occurs at concentrations in the magnitude of 10-3 M, which isthe value found in the cmc study. This value also justifies the maximum efficiencies obtained for the measurements of corrosion resistance at this concentration. The values of contact angle as a function of time suggest that adsorption increases with time, due to the formation of micellar structures on metal surface
Resumo:
Oxygen carriers are metal oxides which have the ability to oxidize and reduce easily by various cycles. Due to this property these materials are widely usedin Chemical-Looping Reforming processes to produce H2 and syngas. In this work supports based on MCM-41 and La-SiO2 were synthesized by hydrothermal method. After the synthesis step they were calcined at 550°C for 2 hours and characterized by TG, XRD, surface area using the BET method and FTIR spectroscopy. The deposition of active phase, in this case Nickel, took place in the proportions of 5, 10 and 20% by weight of metallic nickel, for use as oxygen carriers.The XRD showed that increasing in the content of Ni supported on MCM-41 resulted in a decrease in spatial structure and lattice parameter of the material. The adsorption and desorption curves of the MCM-41 samples exhibited variations with the increase of Ni deposited. Surface area, average pore diameter and wall density of silica showed significant changes , due to the increase of the active phase on the mesoporous material. By other hand, in the samples with La-SiO2 composition was not observed peaks characteristic of hexagonal structure, in the XRD diffractogram. The adsorption/desorption isotherms of nitrogen observed are type IV, characteristic of mesoporous materials. The catalytic test indicates that the supports have no influence in the process, but the nickel concentration is very important, because the results for minor concentration of nickel are not good. The ratio H2/O2 was close to 2, for all 15 cycles involving the test storage capacity of O2, indicating that the materials are effective for oxygen transport
Resumo:
Chemical modification of clays has been extremely studied in the search for improvements of their properties for use in various areas, such as in combating pollution by industrial effluents and dyes. In this work, the vermiculite was chemically modified in two ways, characterized and evaluated the adsorption of methylene blue dye. First was changed with the addition of a surfactant (hexadecyltrimethylammonium bromide, BHTA) making it an organophilic clay and then by adding an acid (HCl) by acid activation. Some analyzes were performed as X-ray fluorescence (FRX), X-ray diffraction (DRX), adsorption isotherms of methylene blue dye, infrared (FTIR) , scanning electron microscopy (SEM), thermal gravimetric analysis and spectroscopy energy dispersive (EDS). Analysis by FRX of natural vermiculite indicates that addition of silicon and aluminum, clay presents in its structure the magnesium, calcium and potassium with 16 % organic matter cations. The DRX analyzes indicated that the organic vermiculite was an insertion of the surfactant in the space between the lamellae, vermiculite and acid partial destruction of the structure with loss of crystallinity. The adsorption isotherms of methylene blue showed that there was a significant improvement in the removal of dye to the vermiculite with the addition of cationic surfactant hexadecyltrimethylammonium bromide and treatment with acid using HCl 2 mol/L. In acid vermiculites subsequently treated with surfactant, the adsorption capacity increased with respect to natural vermiculite, however was much lower compared vermiculite modified with acid and surfactant separately. Only the acidic vermiculite treated with surfactant adjusted to the Langmuir model. As in the infrared spectrometry proved the characteristics of natural vermiculite. In the organic vermiculite was observed the appearance of characteristic bands of CH3, CH2, and (CH3)4N. Already on acid vermiculite, it was realized a partial destruction with decreasing intensity of the characteristic band of vermiculite that is between 1074 and 952 cm-1. In the SEM analysis, it was observed that there was partial destruction to the acid treatment and a cluster is noted between the blades caused by the presence of the surfactant. The TG shows that the higher mass loss occurs at the beginning of the heating caused by the elimination of water absorbed on the surface between layers. In the organic vermiculite also observed a loss of mass between 150 and 300 °C caused decomposition of the alkylammonium molecules (surfactants)
Resumo:
The process of adsorption and micellization of the surfactants sodium dodecyl sulfate, dodecylammonium chloride and hexaethylene glycol mono-n-dodecyl ether in water-air interface has been studied using measurements of surface tension in aqueous media and NaCl 0.1 mol/L in temperatures of 25, 33 and 40 °C. From these data, critical micelle concentrations and thermodynamic parameters of micellization and adsorption were determined in order to elucidate the behaviors of micellization and adsorption for these surfactants in the proposed medium. For the determination of the thermodynamic parameters of adsorption we utilized the equations of isotherms of Langmuir and Gibbs. Γmáx values determined by the different equations were correlated to the explanation of results. Temperature and salinity were analyzed in terms of their influence on the micellization and adsorption process, and the results were explained based on intermolecular interactions. The values of Gmic have confirmed that the micelle formation for the surfactants studied occurs spontaneously
Resumo:
The natural gas is an alternative source of energy which is found underground in porous and permeable rocks and being associated or not to the oil. Its basic composition includes methane, other hydrocarbon and compounds such as carbon dioxide, nitrogen, sulphidric gas, mercaptans, water and solid particles. In this work, the dolomite mineral, a double carbonate of calcium and magnesium whose the chemical formula is CaMg(CO3)2, was evaluated as adsorbent material. The material was characterized by granulometric analysis, X-ray fluorescence, X-ray diffraction, thermogravimetric analysis, differential thermal analysis, specific surface area, porosity, scanning electronic microscopy and infrared spectroscopy. Then the material was functionalized with diethanolamine (dolomite+diethanolamine) and diisopropylamine (dolomite+diisopropylamine). The results indicated that the adsorbents presented appropriate physiochemical characteristics for H2S adsorption. The adsorption tests were accomplished in a system coupled to a gas chromatograph and the H2S monitoring in the output of the system was accomplished by a pulsed flame photometric detector (PFPD). The adsorbents presented a significant adsorption capacity. Among the analyzed adsorbents, the dolomite+diethanolamine presented the best capacity of adsorption. The breakthrough curves obtained proved the efficiency of this process
Resumo:
The mining industry is responsible for the generation of waste from their natural process of extraction. The mining impacts in urban areas are of special importance due to the high urban occupation, which are exacerbated due to the proximity of the mined areas and populated areas. Some solutions to wastedisposal have the potential to significantly reduce the environmental risks and liabilities, but represent higher costs in the stages of deployment and operation. The addition of mining waste as raw material in the development of commercial products reduces the environmental impacts, transforming the waste into a positive element in the generation of employment and income. This thesis studies the incorporation of waste iron ore in two clays, one from the ceramic industry of the City of Natal and the other from the ceramic industry of the Seridó Region, both in the State of Rio Grande do Norte, Brazil. Percentages of iron ore waste of 5%, 10% , 15%, 20%, 25% and 30% were used in the tested ceramic matrix. The two clays and the iron ore waste used as part of this investigation were characterized by X-ray diffraction tests, X-ray fluorescence tests, differential thermal analysis, thermogravimetric analysis and dilatometric analysis. The samples were sintered under temperatures of 850 °C, 950 °C and 1050°C at a heating rate of 5 °C/min with isotherms of two hours. The following tests were performed with the samples: linear shrinkage, water absorption, apparent porosity, apparent density, mass loss in fire and bending resistance in order to obtain their physical and mechanical properties. An amount of 5% of waste iron ore in the matrix clay at a temperature of 850 0C resulted in na increase of about 65% in the tensile strength of the clay samples from the Natal ceramic industry. A linear shrinkage of only 0.12% was observed for the samples, which indicates that the physical properties of the final product were not influenced by the addition of the waste
Resumo:
Heavy metals are used in many industrial processestheirs discard can harm fel effects to the environment, becoming a serious problem. Many methods used for wastewater treatment have been reported in the literature, but many of them have high cost and low efficiency. The adsorption process has been used as effective for the metal remoal ions. This paper presents studies to evaluate the adsorption capacity of vermiculite as adsorbent for the heavy metals removal in a synthetic solution. The mineral vermiculite was characterized by differents techniques: specific surface area analysis by BET method, X-ray diffraction, raiosX fluorescence, spectroscopy in the infraredd region of, laser particle size analysis and specific gravity. The physical characteristics of the material presented was appropriate for the study of adsorption. The adsorption experiments weredriveal finite bath metod in synthetic solutions of copper, nickel, cadmium, lead and zinc. The results showed that the vermiculite has a high potential for adsorption, removing about 100% of ions and with removal capacity values about 85 ppm of metal in solution, 8.09 mg / g for cadmium, 8.39 mg/g for copper, 8.40 mg/g for lead, 8.26 mg/g for zinc and 8.38 mg/g of nickel. The experimental data fit in the Langmuir and Freundlich models. The kinetic datas showed a good correlation with the pseudo-second order model. It was conducteas a competition study among the metals using vermiculiti a adsorbent. Results showed that the presence of various metals in solution does not influence their removal at low concentrations, removing approximat wasely 100 % of all metals present in solutions