3 resultados para iron chelating agent
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment
Resumo:
Violacein is a violet pigment isolated from many gram-negative bacteria, especially from Chromobacterium violaceum, a betaproteobacterium found in the Amazon River in Brazil. It has potential medical applications as an antibacterial, fungicide, anti-tryptanocidal, anti-ulcerogenic and anti-cancer drug, among others. Furthermore, its pro-oxidant activity has been suggested, but only in two specific tumor lineages. Thus, in the present study, the prooxidant effects of violacein were investigated in both normal and tumor cells, seeking to evaluate the cell responses. The evaluation of violacein cytotoxicity using the Trypan blue dye exclusion method indicated that CHO-K1 cells were more resistant than tumor HeLa cells. The oxidative stress induced by violacein was manifested as an increase in intracellular SOD activity in CHO-K1 and MRC-5 cells at a specific concentration range. Nevertheless, a decrease was detected specifically at 6-12 μM in HeLa and MRC-5 cells. Interestingly, the increase in SOD activity was not followed by a concomitant increase in catalase activity. Regarding to oxidative stress biomarkers, increased protein carbonylation and lipid hydroperoxides levels were detected respectively in CHO-K1 and MRC-5 cells treated with violacein at 1.5-3 μM and 3 μM, which may be an evidence that this compound causes oxidative stress specifically in these conditions. Additionally, it is believed that the decline in cell viability observed in MRC-5 cells and HeLa treated with violacein at 6-12 M is due to mechanisms not related to oxidative stress. Moreover, the results suggested that violacein might cause oxidative stress by increasing endogenous levels of O2 -, since the occurrence of an expressive change in SOD activity. In addition, in order to evaluate the antioxidant activity of violacein in the absence of a biological system, the total antioxidant and iron chelating activity were evaluated, so that antioxidant activities were detected at 30 and 60 μM of violacein. Altogether, the results indicate that although oxidative stress is triggered by incubation with violacein, it did not seem to be high enough to cause serious damage to cell biomolecules in HeLa cells and only at specific concentrations in CHOK-1 and MRC-5 cells. Comparing the results obtained in cell culture and the in vitro antioxidant activity evaluation, the results confirmed that violacein presents opposing oxidant features when in presence or absence of a biological system and the antioxidant character only occurs at high concentrations of the pigment.
Resumo:
The present work deals with the synthesis of materials with perovskite structure with the intention of using them as cathodes in fuel cells SOFC type. The perovskite type materials were obtained by chemical synthesis method, using gelatin as the substituent of citric acid and ethylene glycol, and polymerizing acting as chelating agent. The materials were characterized by X-ray diffraction, thermal analysis, spectroscopy Fourier transform infrared, scanning electron microscopy with EDS, surface area determination by the BET method and Term Reduction Program, TPR. The compounds were also characterized by electrical conductivity for the purpose of observing the possible application of this material as a cathode for fuel cells, solid oxide SOFC. The method using gelatin and polymerizing chelating agent for the preparation of materials with the perovskite structure allows the synthesis of crystalline materials and homogeneous. The results demonstrate that the route adopted to obtain materials were effective. The distorted perovskite structure have obtained the type orthorhombic and rhombohedral; important for fuel cell cathodes. The presentation material properties required of a candidate cathode materials for fuel cells. XRD analysis contacted by the distortion of the structures of the synthesized materials. The analyzes show that the electrical conductivity obtained materials have the potential to act as a cell to the cathode of solid oxide fuel, allowing to infer an order of values for the electrical conductivities of perovskites where LaFeO3 < LaNiO3 < LaNi0,5Fe0,5O3. It can be concluded that the activity of these perovskites is due to the presence of structural defects generated that depend on the method of synthesis and the subsequent heat treatment