36 resultados para ion-exchange chromatography fractionation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparin is a pharmaceutical animal widely used in medicine due to its potent anticoagulant effect. Furthermore, it has the ability to inhibit the proliferation, invasion and adhesion of cancer cells to vascular endothelium. However, its clinical applicability can be compromised by side effects such as bleeding. Thus, the search for natural compounds with low bleeding risk and possible therapeutic applicability has been targeted by several research groups. From this perspective, this study aims to evaluate the hemorrhagic and anticoagulant activities and citotoxic effect for different tumor cell lines (HeLa, B16-F10, HepG2, HS-5,) and fibroblast cells (3T3) of the Heparin-like from the crab Chaceon fenneri (HEP-like). The HEP-like was purified after proteolysis, ion-exchange chromatography, fractionation with acetone and characterized by electrophoresis (agarose gel) and enzymatic degradation. Hep-like showed eletroforetic behavior similar to mammalian heparin, and high trisulfated /Nacetylated disaccharides ratio. In addition, HEP-like presented low in vitro anticoagulant activity using aPTT and a minor hemorrhagic effect when compared to mammalian heparin. Furthermore, the HEP-like showed significant cytotoxic effect (p<0.001) on HeLa, HepG2 and B16-F10 tumor cells with IC50 values of 1000 ug/mL, after incubation for 72 hours. To assess the influence of heparin-like on the cell cycle in HeLa cells, analysis was performed by flow cytometry. The results of this analysis showed that HEP-like influence on the cell cycle increasing S phase and decreasing phase G2. Thus, these properties of HEP-like make these compounds potential therapeutic agents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparin is a pharmaceutical animal widely used in medicine due to its potent anticoagulant effect. Furthermore, it has the ability to inhibit the proliferation, invasion and adhesion of cancer cells to vascular endothelium. However, its clinical applicability can be compromised by side effects such as bleeding. Thus, the search for natural compounds with low bleeding risk and possible therapeutic applicability has been targeted by several research groups. From this perspective, this study aims to evaluate the hemorrhagic and anticoagulant activities and citotoxic effect for different tumor cell lines (HeLa, B16-F10, HepG2, HS-5,) and fibroblast cells (3T3) of the Heparin-like from the crab Chaceon fenneri (HEP-like). The HEP-like was purified after proteolysis, ion-exchange chromatography, fractionation with acetone and characterized by electrophoresis (agarose gel) and enzymatic degradation. Hep-like showed eletroforetic behavior similar to mammalian heparin, and high trisulfated /Nacetylated disaccharides ratio. In addition, HEP-like presented low in vitro anticoagulant activity using aPTT and a minor hemorrhagic effect when compared to mammalian heparin. Furthermore, the HEP-like showed significant cytotoxic effect (p<0.001) on HeLa, HepG2 and B16-F10 tumor cells with IC50 values of 1000 ug/mL, after incubation for 72 hours. To assess the influence of heparin-like on the cell cycle in HeLa cells, analysis was performed by flow cytometry. The results of this analysis showed that HEP-like influence on the cell cycle increasing S phase and decreasing phase G2. Thus, these properties of HEP-like make these compounds potential therapeutic agents

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the effect of hyaluronic acid (HA) and of AG on the healing of intestine wounds. Methods: The semi-purified extract of the eggs of the mollusc was obtained by fractionation with ammonium sulfate and purification for ion-exchange chromatography. The obtained galactans were eluted in water (neutral galactan) and in 0.1 and 0.2M NaCl (acidic galactans). The in vivo study was performed with 45 “Wistar” rats, separated in three groups (n=15). Solutions containing HA 1%, GA 1% or saline solution 0,9%, was placed topically on the sutures of wounds in the small intestine of the rats. After 05, 10 and 21 days the animals were sacrificed and biopsy of the healing tissue was done. Results: The hystologic grading was more significant for HA and AG groups when compared to the group C. AG stimulated the appearance of macrophages, giant cells and increase in the concentration of collagen in the area of the wound when compared to HA. Conclusion: The topical use of GA in intestinal wounds promoted the anticipation of events that are important in the wound healing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To compare the effect of hyaluronic acid (HA) and of AG on the healing of intestine wounds. Methods: The semi-purified extract of the eggs of the mollusc was obtained by fractionation with ammonium sulfate and purification for ion-exchange chromatography. The obtained galactans were eluted in water (neutral galactan) and in 0.1 and 0.2M NaCl (acidic galactans). The in vivo study was performed with 45 “Wistar” rats, separated in three groups (n=15). Solutions containing HA 1%, GA 1% or saline solution 0,9%, was placed topically on the sutures of wounds in the small intestine of the rats. After 05, 10 and 21 days the animals were sacrificed and biopsy of the healing tissue was done. Results: The hystologic grading was more significant for HA and AG groups when compared to the group C. AG stimulated the appearance of macrophages, giant cells and increase in the concentration of collagen in the area of the wound when compared to HA. Conclusion: The topical use of GA in intestinal wounds promoted the anticipation of events that are important in the wound healing

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies indicate that several components were isolated from medicinal plants, which have antibacterial, antifungal, antitumor and anti-inflammatory properties. Sepsis is characterized by a systemic inflammation which leads to the production of inflammatory mediators exacerbated by excessive activation of inflammatory cells and disseminated intravascular coagulation (DIC), in which the human neutrophil elastase plays an important role in its pathogenesis. Several epidemiological studies suggest that components of plants, especially legumes, can play a beneficial role in reducing the incidence of different cancers. A chymotrypsin inhibitor of Kunitz (Varela, 2010) was purified from seeds of Erythrina velutina (Mulungu) by fractionation with ammonium sulfate, affinity chromatography on Trypsin-Sepharose, Chymotrypsin-Sepharose and ion exchange chromatography on Resource Q 1 ml (GE Healthcare) in system FPLC / AKTA. The inhibitor, called EvCI, had a molecular mass of 17 kDa determined by SDS-PAGE. The purified protein was able to inhibit human neutrophil elastase (HNE), with an IC50 of 3.12 nM. The EvCI was able to inhibit both pathways of HNE release stimulated by PAF and fMLP (75.6% and 65% respectively). The inhibitor also inhibited leukocyte migration in septic mice about 87% and prolonged the time of coagulation and inhibition factor Xa. EvCI showed neither hemolytic activity nor cytotoxicity. EvCI showed a selective antiproliferative effect to HepG2 cell lines with IC50 of 0.5 micrograms per milliliter. These results suggest EvCI as a molecule antagonist of PAF / fMLP and a potential use in fighting inflammation related disorders, disseminated intravascular coagulation (DIC) and cancer

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondroitin sulfate (CS) is a naturally glycosaminoglycan found in the extracellular matrix of connective tissues and it may be extracted and purified those tissues. CS is involved in various biological functions, which may be related to the having structural variability, despite the simplicity of the linear chain structure from this molecule. Researches in biotechnology and pharmaceutical field with wastes from aquaculture has been developed in Brazil. In recent decades, tilapia (Oreochromis niloticus), native fish from Africa, has been one of the most cultivated species in various regions of the world, including Brazil. The tilapia farming is a cost-effective activity, however, it generates large amount of wastes that are discarded by producers. It is understood that waste from tilapia can be used in research as a source of molecules with important biotechnological applications, which also helps in reducing environmental impacts and promote the development of an ecofriendly activity. Thus, nile tilapia viscera were subjected to proteolysis, then the glycosaminoglycans were complexed with ion exchange resin (Lewatit), it was fractionated with increasing volumes of acetone and purified by ion exchange chromatography DEAE-Sephacel. Further, the fraction was analyzed by agarose gel electrophoresis and nuclear magnetic resonance (NMR). The electrophoretic profile of the compound together the analysis of 1H NMR spectra and the HSQC correlation allow to affirm that the compound corresponds to a molecule like chondroitin sulfate. MTT assay was used to assess cell viability in the presence of CS tilapia isolated and showed that the compound is not cytotoxic to normal cells such as cells from the mouse embryo fibroblast (3T3). Then, this compound was tested for the ability to reduce the influx of leukocytes in model of acute peritonitis (in vivo) induced by sodium thioglycolate. In this context, it was done total and differential leukocytes counting in the blood and peritoneal fluid collected respectively from vena cava and the peritoneal cavity of the animals subjected to the experiment. The chondroitin sulfate for the first time isolated from tilapia (CST ) was able to reduce the migration of leukocytes to the peritoneal cavity of inflamed mice until 80.4 per cent at a dose 10µg/kg. The results also show that there was a significant reduction (p<0.001) of the population of polymorphonuclear leukocytes from peritoneal cavity in the three tested doses (0.1µg/kg; 1µg/kg and 10µg/kg) when it was compared to the positive control (just thioglycolate). Therefore, since the CST structure and mechanism of action has been completely elucidated, this compound may have potential for therapeutic use in inflammatory diseases

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inflammation is combined of a vascular and a cellular reaction, resulting in different cells and tissue responses, both the intravascular and extravascular environment. As the inflammatory process occurs, coagulation proteases, in particular thrombin (FIIa), are able to initiate various cellular responses in vascular biology and therefore is often observed activation of other biological systems, leading to complications during an event inflammatory, such as thrombosis and angiogenesis. Thus, antagonists molecules of these events are interesting models for the development of novel anti-inflammatory drugs. Thereby, it is worth stressing the glycosaminoglycans (GAGs), which are able to interact with several proteins involved in important biological processes, including inflammation and coagulation. Therefore, this study aimed to evaluate the anti-inflammatory, antithrombotic and anti-angiogenic potentials, as well anticoagulant of a dermatan sulfate-like GAG (DS) extracted from the Litopenaeus vannamei cephalotorax. The compound was obtained after proteolysis and purification by ion-exchange chromatography. After total digestion by DS-like compounds digesting lyases (chondroitinase ABC), the DS-like nature was revealed, and then called DSL. The shrimp compound showed reduced anticoagulant effect by the aPTT assay, but high anti-IIa activity, directly and through heparin cofactor II. On inflammation, the compound had a significant inhibitory effect with the reduction of proinflammatory cytokines. Potential Inhibitory were reported in the antithrombotic and anti-angiogenic assay, the latter being dose dependent. As for anti-hemostatic activity, the polysaccharides did not induced significant bleeding effect. Thus, the results shown by the shrimp DS-like compound indicate this glycosaminoglycan as a biotechnology target with prospects for the development of new multipotent drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One Kunitz-type trypsin inhibitors (PmTI) was purified from Piptadenia moniliformis seeds, a tree of the sub-family Mimosoideae, by TCA precipitation, affinity chromatography on immobilized trypsin-Sepharose, DEAE cellulose (ion exchange) and Superose 12 (molecular exclusion) column FPLC/AKTA. The inhibitor has Mr of 25 kDa by SDS-PAGE and chromatography molecular exclusion. The N-terminal sequence of this inhibitor showed high homology with other family Kunitz inhibitors. This also stable variations in temperature and pH and showed a small decrease in its activity when incubated with DDT in the concentration of 100mM for 120 minutes. The inhibition of trypsin by PmTI was competitive, with Ki of 1.57 x10-11 M. The activity of trypsin was effectively inhibited by percentage of inhibition of 100%, among enzymes tested, was not detected inhibition for the bromelain, was weak inhibitor of pancreatic elastase (3.17% of inhibition) and inhibited by 76.42% elastase of neutrophils, and inhibited in a moderate, chymotrypsin and papain with percentage of inhibition of 42.96% and 23.10% respectively. In vitro assays against digestive proteinases from Lepidoptera, Diptera and Coleoptera pests were carried out. Several degrees of inhibition were found. For Anthonomus grandis and Ceratitis capitata the inhibition was 89.93% and 70.52%, respectively, and the enzymes of Zabrotes subfasciatus and Callosobruchus maculatus were inhibited by 5.96% and 9.41%, respectively, and the enzymes of Plodia. interpunctella and Castnia licus were inhibited by 59.94% and 23.67, respectively. In vivo assays, was observed reduction in the development of larvae in 4rd instar of C. capitata, when PmTI was added to the artificial diet, getting WD50 and LD50 of 0.30% and 0.33%, respectively. These results suggest that this inhibitor could be a strong candidate to plant management programs cross transgenic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heparan sulfate (HS) and Heparin (Hep) glycosaminoglycans (GAGs) are heterogeneous and highly charged polysaccharides. HS is structurally related to Hep but is much less substituted with sulfo groups than heparin and has a more varied structure (or sequence). Because of structural similiarities between these two polymers, they have been described together as heparinoids . Both chains bind a variety of proteins and mediate various physiologically important processes including, blood coagulation, cell adhesion and growth factor regulation. Heparinoids with structural characteristics similar to these described from HS and/or Hep from mammalian tissues have been isolated from different species of invertebrates, although only a few heparinoids from unusual sources have been characterized. The present study describes the presence of unusual heparinoids population from Artemia franciscana, isolated after proteolysis and fractionation by ion exchange resin and named, F-3.0M. The study model in vivo were hemostasis (rat tail scarification) and inflamatoty activity. The tests in vitro were used for coagulations assays (PT and APTT). The analyse of the heparinoids eluted with 3,0M NaCl showed electrophoretic migration in different buffer systems a single band with a behaviour intermediate between those of mammalian HEP and HS. The main products obtained from Artemia heparinoids after enzymatic degradation with heparitinases I and II from F. heparinum were N-sulphated disaccharides (∆U-GlcNS,6S/ ∆U,2S-GlcNS and ∆U-GlcNS) and N-acetylated disaccharides (∆U, GlcNAc). This heparinoid had a lower hemorrhagic effect (400μg/ml) when compared to unfractiionated heparins(25μg/ml).The results also suggest a negligible APTT activity of this heparinoid (62.2s). No action was observed on PT indicating that F-3.0M haven t action on the extrinsic pathway. The results showed that the fraction F- 3.0M have inhibitory effect on migration of leukocytes, 64.5% in the concentration of 10 μg/ml (P<0.001). The search for new heparin and/or heparan sulphates analogs devoid of anticoagulant activity is an atractive alternative and may open up a wide variety of new therapeutic applications

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A 140,0 kDa lectin was purified and characterized from the mushroom Clavaria cristata. The purification procedures from the crude extract of the mushroom comprised gel filtration chromatography on Sephacryl s200 and ion exchange on Resource Q column. The purified lectin agglutinated all types of human erythrocytes with preference for trypsinized type O erythrocytes. The haemagglutinating activity is dependent of Ca 2+ ions and was strongly inhibited by the glycoprotein bovine submaxillary mucin (BSM) up to the concentration of 0, 125 mg/mL. The C. cristata lectin (CcL) was stable in the pH range of 2,5-11,5 and termostable up to 80 °C. CcL molecular mass determined by gel filtration on a Superose 6 10 300 column was approximately 140,3 kDa. SDS polyacrilamide gel electrophoresis revealed a single band with a molecular mass of approximately 14,5 kDa, when the lectin was heated at 100 ⁰C in the presence or absence of β-mercaptoethanol. CcL induced activation of murine peritoneal macrophages in vitro resulting in the release of nitric oxide (NO), reaching the maximum production at 24 h. In experimental paw oedema model in mice, CcL showed proinflammatory activity being able to induce oedema formation. Cell viability of HepG2, MDA 435 e 3T3 cell lines was examined after 72 h of incubation with CcL in different concentrations (0,5-50 μg/mL). CcL inhibited HepG2 cells growth with an IC50 value of 50 μg/mL. In the present work, the observed immunomodulatory and antiproliferative effects indicate CcL as a possible immunomodulator compound, interfering in the macrophages immune response, taking possible anti-parasitic, anti-tumoral effects or diagnostic and/or therapeutic

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expanded Bed Adsorption (EBA) is an integrative process that combines concepts of chromatography and fluidization of solids. The many parameters involved and their synergistic effects complicate the optimization of the process. Fortunately, some mathematical tools have been developed in order to guide the investigation of the EBA system. In this work the application of experimental design, phenomenological modeling and artificial neural networks (ANN) in understanding chitosanases adsorption on ion exchange resin Streamline® DEAE have been investigated. The strain Paenibacillus ehimensis NRRL B-23118 was used for chitosanase production. EBA experiments were carried out using a column of 2.6 cm inner diameter with 30.0 cm in height that was coupled to a peristaltic pump. At the bottom of the column there was a distributor of glass beads having a height of 3.0 cm. Assays for residence time distribution (RTD) revelead a high degree of mixing, however, the Richardson-Zaki coefficients showed that the column was on the threshold of stability. Isotherm models fitted the adsorption equilibrium data in the presence of lyotropic salts. The results of experiment design indicated that the ionic strength and superficial velocity are important to the recovery and purity of chitosanases. The molecular mass of the two chitosanases were approximately 23 kDa and 52 kDa as estimated by SDS-PAGE. The phenomenological modeling was aimed to describe the operations in batch and column chromatography. The simulations were performed in Microsoft Visual Studio. The kinetic rate constant model set to kinetic curves efficiently under conditions of initial enzyme activity 0.232, 0.142 e 0.079 UA/mL. The simulated breakthrough curves showed some differences with experimental data, especially regarding the slope. Sensitivity tests of the model on the surface velocity, axial dispersion and initial concentration showed agreement with the literature. The neural network was constructed in MATLAB and Neural Network Toolbox. The cross-validation was used to improve the ability of generalization. The parameters of ANN were improved to obtain the settings 6-6 (enzyme activity) and 9-6 (total protein), as well as tansig transfer function and Levenberg-Marquardt training algorithm. The neural Carlos Eduardo de Araújo Padilha dezembro/2013 9 networks simulations, including all the steps of cycle, showed good agreement with experimental data, with a correlation coefficient of approximately 0.974. The effects of input variables on profiles of the stages of loading, washing and elution were consistent with the literature

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seeking a greater appreciation of cheese whey was developed to process the hydrogenation of lactose for the production of lactitol, a polyol with high added value, using the catalyst Ni / activated carbon (15% and 20% nickel), the nitride Mo2N, the bimetallic carbide Ni-Mo/ activated carbon and carbide Mo2C. After synthesis, the prepared catalysts were analyzed by MEV, XRD, laser granulometry and B.E.T. The reactor used in catalytic hydrogenation of lactose was the type of bed mud with a pressure (68 atm), temperature (120 oC) and stirring speed (500 rpm) remained constant during the experiments. The system operated in batch mode for the solid and liquid and semi-continuous to gas. Besides the nature of the catalyst, we studied the influence of pH of reaction medium for Mo2C carbide as well as evaluating the character of the protein inhibitor and chloride ions on the activity of catalysts Ni (20%)/Activated Carbon and bimetallic carbide Ni-Mo/Activated Carbon. The decrease in protein levels was performed by coagulation with chitosan and adsorption of chloride ions was performed by ion exchange resins. In the process of protein adsorption and chloride ions, the maximum percentage extracted was about 74% and 79% respectively. The micrographs of the powders of Mo2C and Mo2N presented in the form of homogeneous clusters, whereas for the catalysts supported on activated carbon, microporous structure proved impregnated with small particles indicating the presence of metal. The results showed high conversion of lactose to lactitol 90% for the catalyst Ni (20%)/Activated Carbon at pH 6 and 46% for the carbide Mo2C pH 8 (after addition of NH4OH) using the commercial lactose. Monitoring the evolution of the constituents present in the reaction medium was made by liquid chromatography. A kinetic model of heterogeneous Langmuir Hinshelwood type was developed which showed that the estimated constants based catalysts promoted carbide and nitride with a certain speed the adsorption, desorption and production of lactitol

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The produce of waste and the amount of the water produced coming from activities of petroleum production and extraction has been a biggest challenge for oil companies with respect to environmental compliance due to toxicity. The discard or the reuse this effluent containing organic compounds as BTEX (benzene, toluene, ethylbenzene and xylene) can cause serious environmental and human health problems. Thus, the objective this paper was study the performance of two process (separately and sequential) in one synthetic effluent for the benzene, toluene and xylene removal (volatile hydrocarbons presents in the produced water) through of electrochemical treatment using Ti/Pt electrode and exchange resin ionic used in the adsorption process. The synthetic solution of BTX was prepared with concentration of 22,8 mg L-1, 9,7 mg L-1 e 9,0 mg L-1, respectively, in Na2SO4 0,1 mol L-1. The experiments was developed in batch with 0.3 L of solution at 25ºC. The electrochemical oxidation process was accomplished with a Ti/Pt electrode with different current density (J = 10, 20 e 30 mA.cm-2). In the adsorption process, we used an ionic exchange resin (Purolite MB 478), using different amounts of mass (2,5, 5 and 10 g). To verify the process of technics in the sequential treatment, was fixed the current density at 10 mA cm-2 and the resin weight was 2.5 g. Analysis of UV-VIS spectrophotometry, chemical oxygen demand (COD) and gas chromatography with selective photoionization detector (PID) and flame ionization (FID), confirmed the high efficiency in the removal of organic compounds after treatment. It was found that the electrochemical process (separate and sequential) is more efficient than absorption, reaching values of COD removal exceeding 70%, confirmed by the study of the cyclic voltammetry and polarization curves. While the adsorption (separately), the COD removal did not exceed 25,8%, due to interactions resin. However, the sequential process (electrochemical oxidation and adsorption) proved to be a suitable alternative, efficient and cost-effectiveness for the treatment of effluents petrochemical.