6 resultados para insulators
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others
Resumo:
The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C
Resumo:
It presents a new type of insulation for ductwork hot water, which can be used in solar systems for heating water, which consists of a composite of different compositions based on plaster, cement and EPS ground, palm and water. This composite has as its main features easy assembly and manufacturing processes and low cost. Comparative results will be presented on the tests of materials and thermal tubes proposed. Four formulations were used to manufacture tubes with three diameters 70, 65 and 42mm. It was also tested conventionally used for elastomeric foam insulation to 110 ° C, for a comparative analysis with the composite pipe insulator proposed. It will demonstrate that the cost of manufacturing of such tubes is competitive with alternative elastomeric foam tested, but results of the composite tube to the temperature range studied, are lower. Another drawback of the composite insulator tube is its large mass. It would be important to test such a composite for greater levels of temperature to a diagnostic technique competitive with conventionally used insulators. A positive factor of using the proposed composite-tube would be the recycling of EPS so damaging to the environment, representing an environmentally friendly application of science
Resumo:
The electrical ceramic insulators industry, uses noble raw materials such as siliceous and aluminous clays of white burning, in order to provide plasticity of the mass and contribute to electrical and mechanical properties required of the product, and feldspar with the flux function In literature references the composition of the masses indicates that the clay participates in percentage between 20 and 32, and feldspar 8 to 35, these materials have significant cost. In this research was performed the total replacement of commercial clay, for white burning clay from Santa Luzia region in southern Bahia and partial replacement of feldspar by ash residue of husk conilon coffee burning, from extreme south of Bahia. The objective of replacement these raw materials is to aver its technical feasibility and call attention for the embryo pole of ceramic industry for the existing in the south and extreme south of Bahia, which has significant reserves of noble raw materials such as clay white burning, kaolin, quartz and feldspar, and generates significant volume of gray husk conilon coffee as alternate flux. Clay Santa Luzia is prima noble material whose current commercial application is the production of white roofing. The residue of coffee husk ash is discarded near of production sites and is harmful to the environment. Phase diagrams and statistic design of experiments, were used for optimization and cost savings in research. The results confirmed the expectations of obtaining electrical ceramic insulators, with white burning clay of Santa Luzia and partial replacement up to 35.4% of feldspar, by treaty residue of conilon ash coffee husk burning. The statistic design that showed best results was for formulation with percentages of: clay 26.4 to 30.4%; kaolin 14.85 to 17.1%; feldspar 12.92 to 16.96%; R2 residue 7.08 to 9.2% and Quartz 32.5 to 38.75%, relative to the total mass of the mixture. The best results indicated; 0.2 to 1.4% apparent porosity , water absorption 0.1 to 0.7%, flexural strength 35 to 45MPa , dielectric strength 35-41 kV/cm , the transverse resistivity 8x109 2.5x1010 Ω.cm and for the dielectric constant ε/ε0 7 to 10.4, specification parameters for manufacturing ceramic electrical insulators of low and medium voltage.
Resumo:
The dielectric porcelain is usually obtained by mixing various raw materials proportions and is used in the production of electronic equipment for various applications, from capacitors of high and low Power to insulators for low, medium, high and extra high voltage, which are used in distribution lines and transmission of electricity.This work was directed to the s tudy of technological properties of technic porcelain, made from raw materials extracted from pegmatites found in the regions of Seridó and the Alto Oeste of Rio Grande do Norte, which are made of kaolin, quartz and feldspar, abundant and high quality in these regions. The technic ceramics were obtained by mixing in appropriate levels, kaolin, feldspar, quartz and clay, the last item from a pottery in the city of Sao Gonçalo do Amarante, Rio Grande do Norte. During the development the following characterizations correlated to raw materials were made: laser particle sizing, x-ray diffraction, DTA and TG. The compositions studied were formed by uniaxial pressing at a pressure of 50 MPa and sintered at temperatures ranging from 1150 to 1350ºC and levels (times) of sintering between 30, 60, 90 and 120 minutes. The characterization of the samples were taken from the analysis of weight loss, linear shrinkage, porosity, stoneware curve, bulk density, flexural strength of three points, SEM and X-ray diffraction, TMA, Dielectric and cross Resistivity. The studied materials can be employed in producing the objects used in electrical engineering such as: insulators for low, medium and high-voltage electrical systems, command devices, bushing insulation for transformers, power capacitors, spark plugs, receptacles for fluorescent and incandescent light bulbs and others
Resumo:
The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C