4 resultados para injectors

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biodiesel production has increased over the last decade because of the benefits associated with this fuel, including renewability, domestic feedstock, lower toxicity, and biodegradability. From 2008, the use of beef tallow as a feedstock for biodiesel production in Brazil has increased in significance, representing the second largest source of biodiesel, after soybeans. However, the performance of biodiesel in cold weather conditions is worse than diesel because of deposition of insoluble at low temperatures, accelerating the plugging of fuel filters and injectors of the vehicle engine. Studies have been conducted on beef tallow biodiesel, mostly related to the properties of thermal and oxidative stability. However, few studies have described the nature of the precipitate formed and its influence on product quality. Research suggests that the cause of deposition is related to the nature of saturated esters and monoacylglycerols as inducing agents. This study monitored the levels of mono-, diand triacylglycerols, the oxidation stability and the cold filter plugging point (CFPP) in beef tallow biodiesel samples from two commercial producers in Brazil for a period of twelve months. Filtered precipitates were analyzed by comparative techniques of GCFID, HPLC-UV/VIS, HPLC-MS-IT-TOF and TG to verify the nature, using monopalmitin and monostearin as reference standards. The formation of precipitate reduced the levels of monoacylglycerols in the beef tallow biodiesel. GC-FID and LCMS- IT-TOF results confirmed the nature of the deposit as saturated monoacylglycerols, predominantly monostearin and monopalmitin as the second major component. Moreover the TG analysis of the residue indicated similar thermal decomposition of the reference standards. The precipitate did not affect the oxidation stability of beef tallow biodiesel and the CFPP characteristic of blends up B60. However, the presence of iron reduced significantly the oxidation stability of biodiesel

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With an increasing number of mature fields, heavy oil recovery has performed one of the great challenges of the oil industry. The Brazilian Northeast, for example, has numerous heavy oil reservoirs are explored with the use of thermal methods. Among the types of methods used for heavy oil, there is the method of in-situ combustion, a technique in which heat is produced within the container, unlike the injection of heated fluid when the heat is generated at the surface and transported to the reservoir. In this type of process, it is common to use vertical wells as injectors and producers. However, methods which use horizontal wells like oil producers are increasingly studied because of greater contact area between the formation and combustion front. Thus, the main objective of this work was to study the different configurations of wells (CIS THAITM and CAGD) in the process of in-situ combustion in oil recovery using a semi-synthetic tank with Brazilian Northeast features. The method "toe-to-heel air injection" (THAITM) is a process of enhanced oil recovery, which is the integration of in-situ combustion with technological advances in drilling horizontal wells. This method uses horizontal wells such as oil producers, keeping vertical injection wells for injecting air. The oil drain process by differential gravitational assisted with combustion (CAGD) is an integrated, in this configuration the horizontal injector well is drilled at the top formation with a horizontal production well in the lower section. The simulations were performed in a commercial program of thermal processes, called "STARS" (Steam, Thermal, and Advanced Processes Reservoir Simulator), the company CMG (Computer Modelling Group). An analysis of the air flow injection was performed and it was found that each method had a maximum injection to the base model, a show that through this air injection limit was reduced cumulative production of oil. Analyses of operating parameters were used: injection flow, configuration and completion of wells. In the sensitivity analysis we found that the air injection flow showed greater influence on THAI method, since the CIS method the completion of the wells was the most influential parameter and CAGD configuration wells showed the greatest influence in the recovered fraction. The economic results have shown that the best case obtained in CAGD method because, despite having higher initial cost showed the best financial return compared to the best cases the CIS and THAI.