5 resultados para increased solar panel utilization

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low voltage solar panels increase the reliability of solar panels due to reduction of in series associations the configurations of photovoltaic cells. The low voltage generation requires DCDC converters devices with high efficiency, enabling raise and regulate the output voltage. This study analyzes the performance of a photovoltaic panel of Solarex, MSX model 77, configured to generate an open circuit voltage of 10.5 V, with load voltage of 8.5 V, with short circuit current of 9 A and a power of 77 W. The solar panel was assembled in the isolated photovoltaic system configuration, with and without energy storage as an interface with a DCDC converter, Booster topology. The converter was designed and fabricated using SMD (Surface Mounted Devices) technology IC (integrated circuit) that regulates its output voltage at 14.2 V, with an efficiency of 87% and providing the load a maximum power of 20.88 W. The system was installed and instrumented for measurement and acquisition of the following data: luminosities, average global radiation (data of INPE Instituto Nacional de Pesquisas Espaciais), solar panel and environment temperatures, solar panel and DC-DC converter output voltages, panel, inverter, and battery charge output currents. The photovoltaic system was initially tested in the laboratory (simulating its functioning in ideal conditions of operation) and then subjected to testing in real field conditions. The panel inclination angle was set at 5.5°, consistent with the latitude of Natal city. Factors such as climatic conditions (simultaneous variations of temperature, solar luminosities and ra diation on the panel), values of load resistance, lower limit of the maximum power required by the load (20.88 W) were predominant factors that panel does not operate with energy efficiency levels greater than 5 to 6%. The average converter efficiency designed in the field test reached 95%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of solar energy for electricity generation has shown a growing interest in recent years. Generally, the conversion of solar energy into electricity is made by PV modules installed on fixed structures, with slope determined by the latitude of the installation site. In this sense, the use of mobile structures with solar tracking, has enabled increased production of the generated energy. However, the performance of these structures depends on the type of tracker and the position control used. In this work, it is proposed position control a strategy applied for a solar tracker, which will be installed in Laboratory of Power Electronics and Renewable Energy (LEPER), located in the Federal University of Rio Grande do Norte (UFRN). The tracker system is of polar type with daily positioning east-west and tilt angle manual adjustment in the seasonal periods, from north to south

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sleep onset and offset delay at adolescence in relation to childhood. Besides biological causes, some external factors as academic obligations and socialization contributes, increasing the burden of school and socialization. However, morning school schedules reduce sleep duration. Besides light strong effect, studies in humans have indicated that exercise influence circadian synchronization. To evaluate the effect of the morning exercise under sunlight on sleep-wake cycle (SWC) of adolescents, 160 high school students (11th year) were exposed to the following conditions: lesson in usual classroom (Group C), lesson in swimming pool exposed to sunlight (Group E), half of them carrying through physical activity (EE) and the other resting (EL). Each experimental group met two stages: assessment of SWC 1 week before and 1 week during the intervention, which was held in Monday and Wednesday between 7:45 and 8:30 am. In the baseline, there were applied the questionnaires "Health and Sleep" and cronotype evaluation (H & O). In addition, students were evaluated before and during the intervention by "Sleep Diary", "Karolinska Sleepiness Scale" (KSS), Psychomotor Vigilance Test (PVT) and actimetry. During the intervention, there was a delay in wake-up time on the weekend and a trend to greater sleep duration on week for the three groups. At the weekend, only the groups EE and EL increased sleep duration. There was no difference in bedtime, irregularity of sleep schedules and nap variables. The sleepiness showed a circadian pattern characterized by higher alertness levels at 11:30 am and sleepiness levels at bedtime and wake-up time on week. On weekends there were higher levels of alertness in these times. In the days of intervention, there was an increase of sleepiness at 11:30 am for groups EL and EE, which may have been caused by a relaxing effect of contact with the water of the pool. In addition, the group EE showed higher alert levels at 14:30 pm on Monday and at 8:30 am in the Wednesday, possibly caused by exercise arousal effect. The reaction time assessed through the TPV did not vary between the stages. The sleep quality improved in the three groups in the second stage, making impossible the evaluation of intervention effect. However, the sleep quality increased on Monday and Tuesday only on the group EE. From the results, it is suggested that the intervention promoted effects on the sleepiness at some day hours. In other SWC variables there were no effects, possibly due to a large SWC irregularity on weekends. Thus, the evaluation of higher weekly frequency EF is necessary, since only two days were insufficient to promote greater effect on adolescents SWC

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing need for food is something that worries the world, which has a population that is growing at a geometric progression while their resources grows at an arithmetic progression. To alleviate this problem there are some proposals, including increased food production or reduce waste thereof. Many studies have been conducted in the world in order to reduce food waste that can reach 40% of production, depending on the region. For this purpose techniques are used to retard degradation of foods, including drying. This paper presents a design of a hybrid fruit dryer that uses solar energy and electric energy with automation of the process. To accomplish drying tests were chosen Typical fruits with good acceptability as processed fruits. During the experiments were measured temperature values at different points. Were also measured humidity values, solar radiation and mass. A data acquisition system was built using a Arduino for obtaining temperatures. The data were sent to a program named Secador de Frutas, done in this work, to plot the same. The volume of the drying chamber was 423 liters and despite the unusual size test using mirrors to increase the incidence of direct radiation, showed that the drier is competitive when compared with other solar dryers produced in Hydraulic Machines and Solar Energy Laboratory (LMHES ) UFRN. The drier has been built at a cost of 3 to 5 times smaller than industrial dryers that operate with the same load of fruit. And the energy cost to produce dried fruits was more feasible compared with such dryers that use LPG as an energy source. However, the drying time was longer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase in the efficiency of photo-voltaic systems has been the object of various studies the past few years. One possible way to increase the power extracted by a photovoltaic panel is the solar tracking, performing its movement in order to follow the sun’s path. One way to activate the tracking system is using an electric induction motor, which should have sufficient torque and low speed, ensuring tracking accuracy. With the use of voltage source inverters and logic devices that generate the appropriate switching is possible to obtain the torque and speed required for the system to operate. This paper proposes the implementation of a angular position sensor and a driver to be applied in solar tracker built at a Power Electronics and Renewable Energies Laboratory, located in UFRN. The speed variation of the motor is performed via a voltage source inverter whose PWM command to actuate their keys will be implemented in an FPGA (Field Programmable Gate Array) device and a TM4C microcontroller. A platform test with an AC induction machine of 1.5 CV was assembled for the comparative testing. The angular position sensor of the panel is implemented in a ATMega328 microcontroller coupled to an accelerometer, commanded by an Arduino prototyping board. The solar position is also calculated by the microcontroller from the geographic coordinates of the site where it was placed, and the local time and date obtained from an RTC (Real-Time Clock) device. A prototype of a solar tracker polar axis moved by a DC motor was assembled to certify the operation of the sensor and to check the tracking efficiency.