6 resultados para high performance liquid chromatography-inductively coupled plasma-mass sepetrometry
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Algaroba (Prosopis juliflora) is a typical legume from arid and semi arid regions, which is composed by sugar-rich pods and high protein seeds. Phenolic compounds are secondary metabolites recognized as potent bioactive compounds, found in several vegetables.Therefore, the objective of this work is to characterize the algaroba flour in terms of its physicalchemical composition, total phenolic content, antioxidant activity by DPPH and ABTS methods, a-amylase and a-glycosidase inhibition, as well as to analyze its organic compounds by high performance liquid chromatography (HPLC). Three experimental groups were investigated (seeds, seeds and pod together and only pod), which were prepared by oven drying and posterior grinding. Water and ethanol extracts (70, 80, 100% v/v) were prepared and used for functional studies. Organic compounds were detected by using HPLC equipment coupled to mass spectrometer. Results show important physical-chemical differences among the experimental groups, seeds, seeds and pod together and only pod. The algarroba seed flour is high in protein (49.49%) and fat (3.10%), while the pod flour is especially rich in sugar (60.3% to 67.9%). Algaroba phenolics are concentrated in pod flour, mainly in water extracts (1.30 mg GAEQ/100g sample). All seed extracts showed high DPPH activity and maximum antioxidant activity was registered for ethanol 80% extracts (19.81 μM Trolox/g sample). The ABTS activity ranged from 9.73 to 12.74 μM Trolox/g sample. Nearly all the extracts were able to inhibit α-amylase activity mildly (30.50% to 48.80%), while the maximum α-glycosidase inhibition was observed for pod water extracts (81.03%). Algaroba water extracts proven to be especially rich in organic compounds, observed by the high number of chromatographic peaks. Results demonstrate that algaroba is a potential candidate for further investigations concerning its possible functional applications
Resumo:
Hancornia speciosa Gomes (Apocynaceae), popularly known as ‘mangabeira’, has been used in folk medicine to treat inflammatory disorders, hypertension, dermatitis, diabetes, liver diseases and stomach disorders. Regarding the Hancornia speciosa fruits, the ethnobotany indicates its use especially for treating inflammation and tuberculosis. However, no study has been done so far to prove such biological activities. The objective was evaluation anti-inflammatory activity from the fruits of Hancornia speciosa Gomes (mangabeira). Aqueous extract was prepared by decoction, subsequently submitted the liquid-liquid fractionation. The secondary metabolites were identified by high performance liquid chromatography coupled with detector diode array (HPLC-DAD) and liquid chromatography diode array detector coupled with mass spectrometry (LC-DAD-MS). The anti-inflammatory properties of the aqueous extract, dichloromethane (CH2Cl2), ethyl acetate (EtOAc) and n-butanol (n-BuOH) fractions of the fruits from H. speciosa, as well as rutin and chlorogenic acid were investigated using in vitro and in vivo models. In vivo tests comprised the xylene-induced ear edema that was measured the formation of edema, carrageenan-induced peritonitis was evaluated the total leukocytes at 4h and zymosan-induced air pouch was measured the total leukocytes and differential cell count at 6, 24 and 48 hours, whereas in vitro tests were evaluated levels of cytokines IL-1β, IL-6, IL-12 and TNF-α using ELISA obtained of carrageenan-induced peritonitis model. The results showed the presence of rutin and chlorogenic acid were detected in the aqueous extract from H. speciosa fruits by HPLC-DAD and LC-DAD-ME. Furthermore, the aqueous extracts and fractions, as well as rutin and chlorogenic acid significantly inhibited the xilol-induced ear edema and reduced cell migration in the animal models such as carrageenan-induced peritonitis and zymosan-induced air pouch. In addition, reduced levels of cytokines IL-1β, IL-6, IL-12 and TNF-α were observed. This is the first study that demonstrated the anti-inflammatory effect of aqueous extract from Hancornia speciosa fruits against different inflammatory agents in animal models, suggesting that their bioactive molecules, especially rutin and chlorogenic acid contributing, at least in part, to the anti-inflammatory effect of aqueous extract. These findings support the widespread use of Hancornia speciosa in popular medicine and demonstrate that this aqueous extract has therapeutic potential for the development of a herbal drugs with anti-inflammatory properties.
Resumo:
The MCM-41 mesoporous synthesis was done using rice hulls ash and chrysotile as natural alternative silica sources. For the using of these sources, chemical and thermic treatments were done in both materials. After chemical and thermic treatments, these materials were employed on the MCM-41 mesoctructures synthesis. The natural materials treated and employed in the synthesis were characterized by several techniques such as X-ray diffraction, N2 adsorption and desorption, scanning electronic microscopy and thermogravimetric analysis. MCM-41 standart samples synthetized with aerosil 200 commercial sílica were used to evaluation. The formed material from rice hulls ash showed values from BET specific area about 468 m².g-1, N2 adsorption and desorption isotherms and loss mass similar to reference materials. The silica from chrysotile calcined and leached was employed to mesoporous materials synthesis. The BET specific area showed values about 700 m².g-1, N2 adsorption and desorption isotherms type IV and loss mass similar to mesoporous materials. The formed material from calcined and leached chrysotile, without calcination, applied to phenol remotion carried high performance liquid chromatography and evaluated with organophilic clays with different treatments. By the characterization techniques were proved that mesoporous materials with lesser order that reference samples. The material formed from rice hulls ash without the calcination step achieved better adsorption results than organophilic clays
Resumo:
Kalanchoe brasiliensis Cambess (Crassulaceae), commonly known as saião , coirama branca , folha grossa , is originally from Brazil and commonly found in São Paulo to Bahia, mainly in the coastal zone. Regarding of biological activities, most preclinical studies were found in the literature, mainly about the anti-inflammatory activity of extracts obtained from leaves and / or aerial parts of K. brasiliensis. As regards the chemical constitution, it has been reported mainly the presence of flavonoids in the leaves of the species, but until this moment did not knows which are the active compounds. Although it is a species widely used in traditional medicine in Brazil, there is no monograph about the quality parameters of the plant drug. In this context, this study aims to characterize and quantify the chemical markers of hydroethanolic extract (HE) from the leaves of K. brasiliensis, which can be used in quality control of plant drug and derivatives obtained from this species. The methodology was divided into two parts: i. Phytochemical study: to fractionate, isolate and characterizate of the chemical (s) marker (s) of the HE from the leaves of K. brasiliensis; ii. To Developed validate of analytical method by High Performance Liquid Chromatography (HPLC)-diode array detector (DAD) to quantify the chemical (s) marker (s) of the EH. i. The EH 50% was prepared by turbo extraction method. It was then submitted to liquid-liquid partition, obtaining dichloromethane, n-butanol and ethyl acetate (AcOEt) fractions. The AcOEt fraction was selected to continue the fractionation process, because it has a chemical profile rich in flavonoids. The acOEt fraction was submitted to column chromatography using different systems for obtaining the compound Kb1. To identify this compound, it was submitted to UV analysis ii. For quantitative analysis, the EH was analyzed by HPLC, using different methods. After selecting the most appropriate method, which showed satisfactory resolution and symmetrical peaks, it was validated according to parameters in the RE 899/2003. As result, it was obtained from the AcOEt fraction the compound Kb1 (2.7 mg). Until this moment, the basic nucleus was characterized by UV analysis using shift reagents. The partial chemical structure of the compound Kb1 was identified as a flavonol, containing hydroxyls in 3 , 4 position (ring A), 5 and 7 free (ring B) and a replacement of the C3 hydroxyl by a sugar. As the analysis were performed in the HPLC coupled to a DAD, we observed that the UV spectrum of the major peaks of EH from K. brasiliensis shown similar UV spectrum. According to the literature, it has been reported the presence of patuletin glycosydes derivatives in the leaves of this species. Therefore, it is suggested that the compound Kb1 is glycosylated patuletin derivative. Probably the sugar (s) unit(s) are linked in the C3 in the C ring. . Regarding the development of HPLC analytical method, the system used consists of phase A: water: formic acid (99,7:0,3, v / v) and phase B: methanol: formic acid (99,7:0,3, v / v), elution gradient of 40% B - 58% B in 50 minutes, ccolumn (Hichrom ®) C18 (250x4, 0 mm, 5 μm), flow rate 0.8 mL / min, UV detection at 370 nm, temperature 25 ° C. In the analysis performed with the co-injection of thecompound Kb1 + HE of K. brasiliensis was observed that it is one of the major compounds with a retention time of 12.47 minutes and had a content of 15.3% in EH of leaves from K. brasiliensis. The method proved to be linear, precise, accurate and reproducible. According to these results, it was observed that compound Kb1 can be used as a chemical marker of EH from leaves of K. brasiliensis, to assist in quality control of drug plant and its derivatives
Resumo:
Studies show the great influence of free radicals and other oxidants as responsible for aging and degenerative diseases. On the other hand, the natural phenolic compounds has shown great as antioxidants to inhibit lipid peroxidation and lipoxygenase in vitro. Among these, is highlighted trans-resveratrol ( 3,5,4 `- trihydroxystilbene ) phenolic compound , characterized as a polyphenol stilbene class. The vegetables popularly known as "Azedinha" (Rumex Acetosa) has trans-resveratrol in its composition and from this, the present work aimed to study on the supercritical extraction and conventional extraction (Soxhlet and sequential) in roots of Rumex Acetosa, evaluating the efficiency of extractive processes, antioxidant activity, total phenolic content and quantification of trans-resveratrol contained in the extracts. Extractions using supercritical CO2 as solvent, addition of co-solvent (ethanol) and were conducted by the dynamic method in a fixed bed extractor. The trial met a 23 factorial design with three replications at the central point, with the variable reply process yield and concentration of trans-resveratrol and pressure as independent variables, temperature and concentration of co-solvent (% v/v). Yields ( mass of dry extract / mass of raw material used ) obtained from the supercritical extraction ranged from 0,8 to 7,63 % , and the best result was obtained at 250 bar and 90 °C using the co-solvent 15% ethanol (% v/v). The value was calculated for YCER a flow rate of 1,0 ± 0,17 g/min resulting in 0,0469 CO2 ( g solute / g solvent ). The results of the mass yield varied between conventional extractions 0,78 % ( hexane) and 9,97 % (ethanol). The statistical model generated from the data of the concentration of trans-resveratrol performed as meaningful and predictive for a 95% confidence. GC analysis on HPLC (High Performance Liquid Chromatography), transresveratrol was quantified in all extracts and concentration values ranged between 0,0033 and 0,42 ( mg / g extract) for supercritical extracts and between 0,449 and 17,046 (mg / g extract) to conventional extractions and therefore, the Soxhlet extraction with ethanol for more selective trans-resveratrol than the supercritical fluid. Evaluation of antioxidant (radical method to sequester 2,2- diphenyl-1- picryl - hydrazyl - DPPH) the supercritical extracts resulted in EC50 values (concentration effective to neutralize 50% of free radicals) of between 7,89 and 18,43 mg/mL , while resulting in a Soxhlet extraction with EC50 values in the range of 6,05 and 7,39 mg/mL. As for quantification of the phenolic compounds (Method Spectrophotometer Folin-Ciocalteau) the supercritical extracts resulted in values between 85,3 and 194,79 mg GAE / g extract, whereas values derived from the Soxhlet extract resulted in values between 178,5 and 237,8 mg GAE / g extract. The high antioxidant activity can not be attributed solely to the presence of phenolic compounds, but the presence of other antioxidants in the existing Rumex acetosa
Resumo:
The wet oxidation of organic compounds with CO2 and H2O has been demonstrated to be an efficient technique for effluent treatment. This work focuses on the synthesis, characterization and catalytic performance of Fe-MnO2/CeO2, K-MnO2/CeO2/ palygorskite and Fe/ palygorskite toward the wet oxidative degradation of phenol. The experiments were conducted in a sludge bed reactor with controlled temperature, pressure and stirring speed and sampling of the liquid phase. Experiments were performed on the following operating conditions: temperature 130 ° C, pressure 20.4 atm, catalyst mass concentration of 5 g / L initial concentration of phenol and 0.5 g / L. The catalytic tests were performed in a slurry agitated reactor provided with temperature, pressure and agitation control and reactor liquid sampling. The influences of iron loaded on the support (0.3; 7 and 10%, m/m) and the initial pH of the reactant medium (3.1; 6.8; 8.7) were studied. The iron dispersion on the palygorskite, the phase purity and the elemental composition of the catalyst were evaluated by X-Ray Difraction (XRD), Scanning Electron Microscopy (SEM) and X-Ray Flourescence (XRF). The use of palygorskite as support to increase the surface area was confirmed by the B.E.T. surface results. The phenol degradation curves showed that the Fe3+ over palygorskite when compared with the other materials tested has the best performance toward the (Total Organic carbonic) TOC conversion. The decrease in alkalinity of the reaction medium also favors the conversion of TOC. The maximum conversion obtained from the TOC with the catalyst 3% Fe / palygorskite was around 95% for a reaction time of 60 minutes, while reducing the formation of acids, especially acetic acid. With products obtained from wet oxidation of phenol, hydroquinone, p-benzoquinone, catechol and oxalic acid, identified and quantified by High Performance Liquid Chromatography was possible to propose a reaction mechanism of the process where the phenol is transformed into the homogeneous and heterogeneous phase in the other by applying a kinetic model, Langmuir-Hinshelwood type, with evaluation of kinetic constants of different reactions involved.