10 resultados para hepatocyte nuclear factor 4alpha gene
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of nuclear factor κB (NF-κB), matrix metalloproteinase 9 (MMP-9), and CD105 in odontogenic keratocysts (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). STUDY DESIGN: Twenty cases of OKCs, 20 DCs, and 20 RCs were analyzed. A labeling index (LI), which expresses the percentage of NF-κB-stained nuclei, was calculated for the analysis of NF-κB expression. Expression of MMP-9 in the epithelium and in the capsule of each lesion was scored as 0 (<10% stained cells), 1 (10%-50% stained cells), or 2 (>50% stained cells). In addition, MMP-9 immunostaining was analyzed in endothelial cells of vessels with a conspicuous lumen. The angiogenic index was determined based on the number of anti-CD105 antibody-stained microvessels. RESULTS: In the epithelial component, the NF-κB LI was higher in OKCs than in DCs and RCs (P < .001). Analysis of MMP-9 expression in the epithelial component showed a predominance of score 2 in OKCs (90%), DCs (70%), and RCs (65%; P = .159). Evaluation of the NF-κB LI according to the expression of MMP-9 in the epithelial lining revealed no significant difference between lesions (P = .282). In the fibrous capsule, the highest percentage of MMP-9-stained cells (score 2) was observed in OKCs (P = .100). Analysis of the expression of MMP-9 in the vessels of odontogenic cysts showed a predominance of score 2 in OKCs (80%) and RCs (50%) and of score 1 in DCs (75%; P = .002). Mean microvessel count was high in RCs (16.9), followed by DCs (12.1) and OKCs (10.0; P = .163). No significant difference in microvessel count according to the expression of MMP-9 was observed between groups (P = .689). CONCLUSIONS: The results suggest that the more aggressive biologic behavior of OKCs is related to the higher expression of MMP-9 and NF-κB in those lesions. The differences in the biologic behavior of the lesions studied do not seem to be associated with the angiogenic index.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.
Resumo:
The Giant Cell Lesions, both the Central Giant Cells Lesions (CGCL) as the Peripheral Giant Cells Lesions (PGCL), correspond to a group of oral lesions that are histologically similar entities; however they show a variable clinical behaviour. The purpose of this study was to compare the immunohistochemical expression of bone resorption factors RANK (Receptor Activator of Nuclear Factor kappa B), RANKL (Receptor Activator of Nuclear Factor kappa B Ligand) and OPG (Osteoprotegerin) between CGCL and PGCL. Additionally, these bone resorption factors were examined in terms of aggressiveness of these lesions. The sample consisted of 61 cases, 30 cases of PGCL and 31 CGCL (16 non-aggressive and 15 aggressive). The analysis was performed by quantification of mononuclear cells (MO) and giant multinucleated cells (CG) immunopositive to anti-RANK, anti-RANKL and anti-OPG antibodies in 10 fields. Moreover, according to the proportion between the amount of cells positive for RANKL and OPG, the cases were categorized into: RANKL>OPG, OPG>RANKL e RANKL=OPG. CGCL showed a higher amount of MO (p=0.002) and total cells (p=0.003) both positives to RANKL compared with the PGCL. Additionally, the CGCL revealed a significant association with the ratio of RANKL>OPG (p=0.001). Analysis of the bone resorption factors revealed no significant differences between aggressive and non-aggressive CGCL (p>0.05). It was observed a positive correlation between the markers themselves, and a negative correlation between lesion size and quantity of OPG positive MO cells (p=0,004) and total cells (p=0,009). Through these results, we suggest that the greatest CGCL resorptive potential compared to the PGCL, may have occurred to the high expression of RANKL. Furthermore differences in the biological behavior of aggressive and non-aggressive CGCL appear to be related to the expression of these bone resorption factors
Resumo:
The odontogenic keratocysts are distinguished from other odontogenic cystic lesions by their potentially aggressive clinical behavior and association, in some cases, with Gorlin syndrome. Studies have suggested that syndrome keratocysts, in comparison with sporadic lesions, have higher growth and infiltration capacity and higher recurrence tendency. The aim of this study was to analyze, by means of immunohistochemistry, the expressions of receptor activator of nuclear factor κB ligand (RANKL) and osteoprotegerin (OPG), the angiogenic index (CD34) and the presence of myofibroblasts (α-SMA) in primary and recurrent sporadic keratocysts and in keratocysts associated with Gorlin syndrome. The sample was composed by 30 sporadic keratocysts (22 primary and 8 recurrent) and 22 syndrome keratocysts. In the epithelium and in the fibrous capsule of the lesions, the immunoexpression of RANKL and OPG was evaluated by determination of the percentage of positive cells, according to the following scores: 0 (less than 10% of positive cells), 1 (11% - 50% of positive cells), 2 (51% - 75% of positive cells) and 3 (more than 76% of positive cells). In addition, cases were classified according to the RANKL score/ OPG score ratio, as follows: RANKL > OPG, RANKL < OPG, and RANKL = OPG. The angiogenic index was analyzed by counting the microvessels immunoreactive to anti-CD34 antibody in 5 fields (200). The analysis of myofibroblasts was performed by counting the cells immunoreactive to anti-α-SMA antibody in 10 fields (400). The analysis of the expressions of RANKL and OPG in the epithelial lining and in the fibrous capsule did not reveal significant differences between groups (p > 0.05). Regarding the RANKL/ OPG ratio in the epithelial lining, most sporadic primary (54.5%) and syndrome lesions (59.1%) showed RANKL < OPG ratio and RANKL = OPG ratio, respectively (p > 0.05). With respect to the RANKL/ OPG ratio in the fibrous capsule, the majority of sporadic primary (81.8%) and sporadic recurrent lesions (75.0%) and most syndrome lesions (45.5%) showed RANKL = OPG ratio (p > 0.05). The mean number of microvessels was 69.2 in sporadic primary lesions, 67.6 in recurrent lesions, and 71.6 in syndrome lesions, with no significant differences between groups (p > 0.05). The mean number of myofibroblasts was 34.4 in sporadic primary lesions, 29.3 in recurrent lesions, and 33.7 in syndrome lesions, with no significant differences between groups (p > 0.05). In conclusion, the results of the present study suggest that the differences in the biological behavior between sporadic keratocysts and keratocysts associated with Gorlin syndrome may not be related to the expressions of RANKL and OPG, the RANKL/ OPG ratio, the angiogenic index or the number of myofibroblasts in these lesions
Resumo:
Periodontal disease is an infection initiated by oral periodontal pathogens that trigger an immune response culminating in tissue destruction. This destruction is mediated by the host by inducing the production and activation of lytic enzymes, cytokines and the stimulation of osteoclastogenesis. The aim of this study was to compare the immunohistochemical expression of factors involved in bone resorption, RANKL (Ligand Receptor Activator of Nuclear Factor kappa B), OPG (Osteoprotegerin) and TNF-α (tumor necrosis factor alpha) between the gingival healthy, gingivitis and chronic periodontitis and correlate them with clinical parameters. The sample consisted of 83 cases and 12 clinically healthy gums, 42 gingivitis and 29 periodontitis, from 74 adolescent and adult patients with a mean age of 35 years, without systemic changes and non-smokers, predominantly female and race brown. There was no statistically significant difference for the expression of anti-RANKL (p = 0.581) and RANKL / OPG ratio (p = 0.334) when comparing the three conditions, but the anti-OPG and anti-TNF-α showed statistically significant between the types of injury (p = 0.001 and p <0.001, respectively), showing greatest expression in periodontitis. In cases of periodontitis, the variable clinical attachment loss (PIC) was statistically significant and positive correlation, respectively, with immunostaining of anti-RANKL (p = 0.002, p = 0.001 and r = 0.642), anti-OPG (p = 0.018, p = 0.014 and r = 0.451), anti-TNF-α (p = 0.032, p = 0.014 and r = 0.453) and the percentage ratio of RANKL / OPG (p = 0.018, p = 0.002 and r = 0.544). The tooth mobility (MB) showed a statistically significant difference only with immunohistochemical anti-RANKL (p = 0.026), and probing depth (PD) was positively correlated with anti-RANKL (p = 0.028 and r = 0.409), both in cases of periodontitis. Only in cases of gingivitis TNF-α was positively correlated with RANKL (p = 0.012 and r = 0.384) and the RANKL / OPG ratio (p = 0.027 and r = 0.341). Given these results, we conclude that the greatest expression of TNF-α in periodontitis demonstrates a relationship with the progression and severity of periodontal disease and the correlation between all antibodies and clinical attachment loss demonstrates their involvement in periodontal bone resorption
Resumo:
Periodontal diseases, highly prevalent disease in worldwide population, manifest primarily in two distinct entities: plaque-induced gingivitis and periodontitis. Periodontitis is a chronic inflammatory disease characterized of different levels of collagen, cementum, and alveolar bone destruction. Recent experimental studies demonstrated anti-inflammatory and antirreabsortive effect of antihypertensive agents of the angiotensin II receptor blockers class on periodontal disease. The aim of this study was to evaluate the effects of azilsartan (AZT), a potent inhibitor of the angiotensin II receptor which has minimal adverse effects on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor kB ligand (RANKL), receptor activator of nuclear factor kB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Male Wistar albino rats were randomly divided into 5 groups of 20 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with water or AZT for 10 days. Periodontal tissues were analyzed by morphometric exam, histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1b, IL-10, TNF-a, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Treatment with 5 mg/kg AZT resulted in reduced MPO (p˂0.05) and IL-1b (p˂0.05) levels and increased in Il-10 levels (p˂0.05). It was observed a reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and a increased expression of OPG in the animals subjected to experimental periodontitis and threated with AZT (5 mg/kg). Conclusions: These findings suggest an anti-inflammatory and anti-reabsortive effects of AZT on ligature-induced periodontitis in rats.
Resumo:
Base excision repair (BER) proteins has been associated with functions beyond DNA repair. Apurynic/apyrimidinic endonuclease 1 (APE1) is a multifunctional protein involved in a plethora of cellular activities, such as redox activation of transcription factors, RNA processing and DNA repair. Some studies have described the action of the protein 8-oxoguanine (OGG1) in correcting oxidized lesions in promoters as a step in the transcription of pro-inflammatory cytokines. Despite being especially important in redox activation of transcription factors such as nuclear factor κB (NF-κB) and AP- 1, the repair activity of APE1 has not yet been associated with the inflammatory response. In this study, experimental and bioinformatic analysis approaches have been used to investigate the relationship between inhibition of the repair of abasic sites in DNA by MX, a synthetic molecule designed to inhibt the repair activity of APE1, and the modulation of the inflammatory response. The results showed that treatment of monocytes with lipopolysaccharide (LPS) and MX reduced the expression of cytokines, chemokines and toll-like receptors, and negatively regulated biological immune processes, as macrophages activation, and NF-κB and tumor necrosis factor (TNF-α) and interferon pathways, without inducing cell death. The transcriptomic analysis suggests that LPS/MX treatment induces mitochondrial dysfunction, endoplasmic reticulum stress and activation of autophagy pathways, probably activated by impairment of cellular energy and/or the accumulation of nuclear and mitochondria DNA damage. Additionally, it is proposed that the repair activity of APE1 is required for transcription of inflammatory genes by interaction with abasic sites at specific promoters and recruitment of transcriptional complexes during inflammatory signaling. This work presents a new perspective on the interactions between the BER activity and the modulation of inflammatory response, and suggests a new activity for APE1 protein as modulator of the immune response in a redox-independent manner.
Resumo:
In this study, a BCR-ABL expressing human chronic myelogenous leukaemia cell line (K562) was used to investigate the antitumoral potential of a novel lectin (CvL) purified from the marine sponge Cliona varians. CvL inhibited the growth of K562 cells with an IC50 value of 70 g/ml, but was ineffective to normal human peripheral blood lymphocytes in the same range of concentrations tested (180 g/ml). Cell death occurred after 72 h of exposure to the lectin and with sign of apoptosis as analysed by DAPI staining. Investigation of the possible effectors of this process showed that cell death occurred in the presence of Bcl-2 and Bax expression, and involved a caspase-independent pathway. Confocal fluorescence microscopy indicated a major role for the lysosomal protease cathepsin B in mediating cell death. Accordingly, pre-incubation of K562 cells with the cathepsin inhibitor L-trans-epoxysuccinyl-L-leucylamido-(4-guanidino)butane (E-64) abolished the cytotoxic effect of CvL. Furthermore, we found upregulation of tumor necrosis factor receptor 1 (TNFR1) and down-modulation of p65 subunit of nuclear factor kappa B (NFB) expression in CvL-treated cells. These effects were accompanied by increased levels of p21 and downmodulation of pRb, suggesting that CvL is capable of cell cycle arrest. Collectively, these findings suggest that cathepsin B acts as death mediator in CvL-induced cytotoxicity possibly in a still uncharacterized connection with the membrane death receptor pathway
Resumo:
Several pharmacological properties have been attributed to isolated compounds from mushroom. Recently, have these compounds, especially the polysaccharides derived from mushrooms, modulate the immune system, and its antitumor, antiviral, antibiotic and antiinflammatory activities. This study assesses the possible pharmacological properties of the polysaccharides from Scleroderma nitidum mushroom. The centesimal composition of the tissue showed that this fungus is composed mainly of fibers (35.61%), ash (33.69%) and carbohydrates (25.31%). The chemical analysis of the polysaccharide fraction showed high levels of carbohydrates (94.71%) and low content of protein (5.29%). These polysaccharides are composed of glucose, galactose, mannose and fucose in the following molar ratios 0.156, 0.044, 0.025, 0.066 and the infrared analysis showed a possible polysaccharide-protein complex. The polysaccharides from Scleroderma nitidum showed antioxidant potential with concentration-dependent antioxidant activity compared to ascorbic acid. The analysis scavenging of superoxide radical and inhibition of lipid peroxidation showed that the polysaccharides from S. nitidum have an IC50 of 12.70 mg/ml and EC50 10.4 μg/ml, respectively. The antioxidant activity was confirmed by the presence of reducing potential of these polysaccharides. The effect of these polymers on the inflammatory process was tested using the carrageenan or histamine-induced paw edema model and the sodium thioglycolate or zymosan-induced model. The polysaccharides were effective in reducing edema (73% at 50 mg/kg) and cell infiltrate (37% at 10 mg/kg) in both inflammation models tested. Nitric oxide, a mediator in the inflammatory process, showed a reduction of around 26% at 10 mg/kg of body weight. Analysis of pro- and anti-inflammatory cytokines showed that in the groups treated with polysaccharides from S. nitidum there was an increase in cytokines such as IL-1ra, IL-10, and MIP-1β concomitant with the decrease in INF-γ (75%) and IL-2 (22%). We observed the influence of polysaccharides on the modulation of the expression of nuclear factor κB. Thus, polysaccharides from S. nitidum reduced the expression of NF-κB by up to 64%. The results obtained suggest that NF-κB modulation is one of the possible mechanisms that explain the anti-inflammatory effect of polysaccharides from the fungus S. nitidum.