3 resultados para heavy minerals
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This thesis describes the general behavior of the northern shore of the State of Rio Grande do Norte relating beach profile morphology with hydrodynamic and sedimentological parameters. The Macau and Serra Oil Field are inserted on this area and are under accelerated coastal erosion. At these oil fields are installed oil wells from PETROBRAS, nowadays located directly in the shoreline, under constant attacks of coastal processes (e.g. waves, tides and currents), which promote an intense morphodynamic variability of this sandy coast. The area was monitored for 24 months in three different stations (P01, P02 and P03). The methodology applied involved current techniques of beach profiles, hydrodynamical processes, remote sensing and geophysics. A synthesis of results obtained through the use of different time scales (monthly, lunar cycle, seasonal, annual) from a coastal dynamics study is presented. The average wind direction corresponded to 77ºAz (NE). The steepness of the berm and of the shoreface, as well as coastal current direction, do not present major changes, with an average of 36º for the steepness of the berm, 15º for the shoreface and 15º for the coastal current direction. This data set allows us to infer that the months of larger coastal erosion were November/2000 and April/2001, because of the largest wave parameter during this time. The months of worse coastal erosion in this area are related with the increasing wavy energy. This in turn, seems to be related to seasonal climatic variations, with the wave energy and tide currents speed increasing during months of minor precipitations (June to January). The months of worse coastal erosion were September and November, when the largest wave parameters and speed currents are measured in the area. Since these months are included on the period of minor precipitations, we related the coastal erosion to seasonal climatic variations. The results obtained during these 24 months of monitoring confirms a situation of accentuated erosion, mainly in Profile 03 (Barra do Corta-Cachorro), where the wave height, period, and coastal current speed are always larger than the values found in Profile 02 (Macau5). Probably these values are more expressive in Profile 03, because it does not present any natural structure of protection against the wave impacts, as the barrier island located at Ponta do Tubarão, or the sand banks in front of Macau5. The transport of the sediments occurs from East to West, and the sand accumulation is more pronounced on Profile 03 intertidal zone, where there are embrionary dunes in dryer months. The tidal currents speed, on the other hand, is more accentuated in the Macau5 area (Profile 02). At Ponta do Tubarão, the tidal currents presented a preferential direction for NE, at times of flood, currents and for NW, at times of ebb current; at Barra do Corta-Cachorro the direction of the currents were predominantly for NW, independent of the tide phase, coinciding with the preferential direction of the longshore current. This currents inversion at Ponta do Tubarão is attributed to the presence of the Ponta do Tubarão island barrier and by the communication channel of the lagoon with the sea. The tide currents are better observed in protected areas, as in the Ponta do Tubarão, when they present inversion in their direction accordingly to the flood and ebb tide. In open areas, as in Barra do Corta-Cachorro, the tide currents are overprinted by the longshore currents. Sediment analysis does not show important modifications in grain size related to seasonality (dry- and rainy seasons). On the foreshore and backshore zones, the sediments vary from fine to medium sand, while in the shoreface they very from fine to very sands. The grains are mostly spheres, varying from sub rounded to sub angled. Quartz is the main component alongside Feldspat and heavy minerals as accessory components. Biogenic content is also present and mainly represented by mollusks fragments. The calculated sediment transport show values around 100 m3/day. The morphodynamic studies indicated that this is a reflexive area from October to April, and intermediate from May to September. The Relative Tide Range-RTR for this area is 4 < RTR < 15, and so classified in the mixed wave-tide group. Having this exposed we can affirm that the more active natural factors in this area are the currents, followed by the tides and the winds. The anthropic factors are exclusively local and punctual (Macau and Serra Oil Field). Taking in account the economic importance of the area, as well as the intensity of coastal processes acting on this shore, it is important a continuity of the monthly environmental monitoring looking for variations on longer-period cycles. These data have been stored on the geo-referenced database of the projects MARPETRO and PETRORISCO (REDE 05), aiming to model the coastal and sea environment, susceptible to oil spills and their derivatives
Resumo:
This project was developed as a partnership between the Laboratory of Stratigraphical Analyses of the Geology Department of UFRN and the company Millennium Inorganic Chemicals Mineração Ltda. This company is located in the north end of the paraiban coast, in the municipal district of Mataraca. Millennium has as main prospected product, heavy minerals as ilmenita, rutilo and zircon presents in the sands of the dunes. These dunes are predominantly inactive, and overlap the superior portion of Barreiras Formation rocks. The mining happens with the use of a dredge that is emerged at an artificial lake on the dunes. This dredge removes sand dunes of the bottom lake (after it disassembles of the lake borders with water jets) and directs for the concentration plant, through piping where the minerals are then separate. The present work consisted in the acquisition external geometries of the dunes, where in the end a 3D Static Model could be set up of these sedimentary deposits with emphasis in the behavior of the structural top of Barreiras Formation rocks (inferior limit of the deposit). The knowledge of this surface is important in the phase of the plowing planning for the company, because a calculation mistake can do with that the dredge works too close of this limit, taking the risk that fragments can cause obstruction in the dredge generating a financial damage so much in the equipment repair as for the stopped days production. During the field stages (accomplished in 2006 and 2007) topographical techniques risings were used with Total Station and Geodesic GPS as well as shallow geophysical acquisitions with GPR (Ground Penetrating Radar). It was acquired almost 10,4km of topography and 10km of profiles GPR. The Geodesic GPS was used for the data geopositioning and topographical rising of a traverse line with 630m of extension in the stage of 2007. The GPR was shown a reliable method, ecologically clean, fast acquisition and with a low cost in relation to traditional methods as surveys. The main advantage of this equipment is obtain a continuous information to superior surface Barreiras Formation rocks. The static models 3D were elaborated starting from the obtained data being used two specific softwares for visualization 3D: GoCAD 2.0.8 and Datamine. The visualization 3D allows a better understanding of the Barreiras surface behavior as well as it makes possible the execution of several types of measurements, favoring like calculations and allowing that procedures used for mineral extraction is used with larger safety
Resumo:
This dissertation deals with the characterization, distribution and provenience of heavy minerals along the Piranhas-Açu River, from the City of Parelhas (Seridó River) to your mouth at the City of Macau-RN. Many heavy minerals species were recorded in this study: clinoamphibole, epidote (including zoisite), garnet, sillimanite, tourmaline, staurolite, andalusite, zircon, rutile, augite, ilmenite, hematite and magnetite. Major transparent minerals, those forming more than 5% of some assemblages, are hornblende, epidote, tourmaline, staurolite and zircon. Predominant opaque mineral is ilmenite. Six assemblages were identified along the river: (i) Garnet-hornblende-tourmaline with sillimanite, when cutting rocks of the Seridó Formation; (ii) Hornblende-garnet-zircon, when crossing rocks of the Caicó gnaisse-migmatitic Complex; (iii) Hornblende-zircon-epidote-staurolite, when draining rocks of the Jucurutu Formation; (iv) Hornblende-zircon-epidote, when cutting rocks of the Açu Formation; (v) Hornblende-zircon-staurolite, on the lowermost Açu River, when crossing limestones of the Jandaíra Formation and (vi) Zircon-tourmaline-staurolite in the Açu River mouth (Cenozoic rocks) where coastal process dominate. Mineral ratios that reflect differences in grain shape, density, and selective chemical decomposition were used in an attempt to isolate the effects of source and process as controls of mineral variability. Reworking of the sediments was regionally effective in selective sorting; the more equant minerals (e.g. epidote) and heavier minerals (e.g. opaques) had a higher probability of being selected for permanent deposition during reworking. The processes of selective decomposition stand out at the river mouth. A priori knowledge of provenance, associated with the assemblage distribution and effects of process were utilized to the interpretations, that points to the follow provenances: hornblende comes from micashists of the Seridó Formation, orthognaisses and amphibolites of the Caico Complex, paragnaisses and paranphibolites of the Jucurutu Formation and granites intrusions; epidote comes from paragnaisses and calciosilicatics of the Jucurutu Formation, granites intrusions (-Npy3al/ca and -Npy3mz, gravels deposits and Açu Formation; Andalusite and staurolite come from the Seridó Formation; Sillimanite, tourmaline and garnet come from micashists of the Seridó Formation, as well as from quartzites of the Equador Formation; Zircon comes from Precambrian rocks (pink and prismatic zircon) and from sediments of several cycles (round zircon); Opaques come from all rocks cutted for the Piranhas-Açu River; Rutile comes from metamorphic rocks, in general; Augite comes from the Ceará-Mirim, Serra do Cuó and Macau volcanisms. The texture of gravels deposits reveals a sediment transport mechanisms by traction-current processes, together with a diagenetic clay matrix suggests a hot-humid environments for deposition. The presence of unstable heavy minerals assemblages, as well as pebbles of different composition and degrees of rounding and esfericity, indicate more than one source. The occurrence of calcio/alkaline granites suites, in areas closed to the gravel deposits, suggests that these intrusions are the main source of sediments. This could explain for instance, the significant amounts of epidote and presence of unstable heavy minerals (e.g. hornblende). The analyses of heavy minerals also show significante variability between the modern (Piranhas-Açu) and ancestral (Açu Formation) river sediments. In general, these variations reflect relatively higher unstable and lower stable heavy minerals contents of the modern Piranhas-Açu sediments. The absence of significant compositional differences probably reflects uniform weathering conditions