15 resultados para heavy metal deposition
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Our research intends to comprehend the configuration of the resistance (Foucault) as the stylization of life in the contemporary world, taking Heavy Metal as the specific object of study. We believe that Heavy Metal is an ethopoietical device which admits practices of freedom withstanding the reified moral habits since the beginning of the socialization. This is reflected, mainly, in the creation of new individual and communal ways to stylize the life. We also suggest an expansion of Foucault s concept of resistance, considering the idea of consumer society described by Zygmunt Bauman. Our hypothesis understands that the contact with the underground of Heavy Metal provides new ethical manners (Foucault), where the individual take the Heavy Metal as a way of life. At this point, the consumption becomes a key-word since the participation in the underground of Heavy Metal is a way of consumption out of the rules of marketing a practice of freedom, a way of particular existence , being different in both mode and duration
Resumo:
Removing microcontaminants from effluents is a challenge today, because of its high cost and low efficiency, especially in the treatment of effluents containing heavy metals. An alternative that has emerged is the use of biodegradable nanocomposites, which exhibit good removal and recovery performances, in addition to its low cost. With this in mind, the present study aimed to develop and characterize a nanocomposite based on hydroxyapatite (HAP), polyurethane (PU) and polyvinyl alcohol (PVA) for removing heavy metals. Thus, the research was conducted in several steps: i)- Physico-chemical and microbiological hospital effluent characterization; ii)- Production of hydroxyapatite by aqueous precipitation technique, and their characterization; iii)- Production of the nanocomposite in which the hydroxyapatite was added to the polyurethane prepolymers and then the polyvinyl alcohol/hydroxyapatite film was produced; iv)- Polyvinyl composite without film PU/HAp was also produced in the proportions of 20 and 40% HAp; v)- The composites was characterized by the techniques of XRD, FTIR, SEM / EDS, BET, Zeta Potential and TGA; vi)- The sisal and coconut fibres were washed and dried for comparative tests of adsorption; vii)- Adsorption tests for evaluating the removal of heavy metals (nickel and cadmium). Initial screening adsorption capacity (HAp; PU/HAp - 20 and 40%; PU / HAp / PVA), kinetic studies of adsorption of Cd (II) by HAp; multifactorial design analysis (factorial design) for identifying the most important variables in the adsorption of Cd (II) by composite PU/HAp. Also comparative analysis of adsorption of Cd and Ni by composite PU/HAp were conducted, as well as comparative tests of adsorption of Cd (coconut fibre) and Ni (sisal fibre). It was possible to verify that the composite PU/HAp 40% showed better effectiveness for the removal of Cd (II) and Ni (II), above 80%, equivalent to the lignocellulosic fibre used and HAp produced. As main conclusion, it can be referred that the composite PU/HAp 40% is an effective adsorvent to wastewater treatment for heavy metal removal, with low cost and high efficiency
Resumo:
Copper is one of the most used metals in platingprocesses of galvanic industries. The presence of copper, a heavy metal, in galvanic effluents is harmful to the environment.The main objective of this researchwas the removal ofcopperfromgalvanic effluents, using for this purpose anionic surfactants. The removal process is based on the interaction between the polar head group of the anionic surfactant and the divalent copper in solution. The surfactants used in this study were derived from soybean oil (OSS), coconut oil (OCS), and sunflower oil (OGS). It was used a copper synthetic solution (280 ppm Cu+2) simulating the rinse water from a copper acid bath of a galvanic industry. It were developed 23and 32 factorial designs to evaluate the parameters that have influence in theremoval process. For each surfactant (OSS, OCS, and OGS), the independent variables evaluated were: surfactant concentration (1.25 to 3.75 g/L), pH (5 to 9) and the presence of an anionic polymer (0 to 0.0125 g/L).From the results obtained in the 23 factorial design and in the calculus for estimatingthe stoichiometric relationship between surfactants and copper in solution, it were developed new experimental tests, varying surfactant concentration in the range of 1.25 to 6.8 g/L (32 factorial design).The results obtained in the experimental designs were subjected to statistical evaluations to obtain Pareto charts and mathematical modelsfor Copper removal efficiency (%). The statistical evaluation of the 23 and 32factorial designs, using saponifiedcoconut oil (OCS), presented the mathematical model that best described the copper removal process.It can be concluded that OCS was the most efficient anionic surfactant, removing 100% of the copper present in the synthetic galvanic solution
Resumo:
In this work, biosorption process was used to remove heavy metals from used automotive lubricating oils by a bus fleet from Natal-RN-Brazil. This oil was characterized to determine the physical-chemistry properties. It was also characterized the used oil with the aim of determining and quantifying the heavy metal concentration. Fe and Cu were the metals existent in large concentration and these metals were choused to be studied in solubilization process. For the biosorption process was used the seaweed Sargassum sp for the study of influencing of the metals presents separately and with other metals. It was also studied the effect of the protonation treatment of alga with the objective to know the best efficiency of heavy metals removal. The study of the solubilization showed that the presence of more than a metal favors the solubilization of the metals presents in the oil and consequently, it favors the biosorption process, what becomes interesting the perspective application in the heavy metals removal in lubricating oils used, because the presence of more than a heavy metal favors the solubility of all metals present. It was observed that the iron and copper metals, which are present in large concentration, the protonated biosorbtent was more effective. In this study we used as biomass the marine alga Sargassum sp to study the influence of agitation velocity, temperature and initial biomass concentration on the removal of iron and copper from used lubricant oils. We performed an experimental design and a kinetic study. The experiments were carried out with samples of used lubricant oil and predetermined amounts of algae, allowing sufficient time for the mixture to obtain equilibrium under controlled conditions. The results showed that, under the conditions studied, the larger the amount of biomass present, the lower the adsorption capacity of the iron and of the copper, likely due to a decrease in interface contact area. The experimental design led us to conclude that a function can be obtained that shows the degree of influence of each one of the system variables
Resumo:
The study of a promising alternative for the treatment of produced water from the oil industry envisaging its reuse was the focus of this work. Millions of liters of water are generated per day, containing heavy metals in low concentrations (< 0,15 mg/L for Pb, <0,04 mg/L for Cd, <0,04 mg/L for Ni). The technology applied to extract these metals from aqueous phase was the solvent extraction and the extratants used were vegetable oils originated from coconut oil. They can be used in natural form or as derivatives, known as MAC - Mixture of Carboxílics Acids. The determination of the heavy metal con¬centrations in a complex matrix was made by using the atomic absorption spectrometry technique (AAS). On the bench tests using synthetics aqueous solutions containing metals, vegetable oils showed no power to extract the metals studied. The extractant MAC was selective for the Pb> Cd> Ni, in the concentration of 8% in the same organic phase. In this condition, the lower efficiency of extraction obtained was 92% for the Pb, 69% for the Cd, in the range of pH ranging from 6 to 8. An experimental planning was conducted for continuous tests. The device used was called MDIF Misturador-Decantador à Inversão de Fases and the aqueous phase was produced water from Pólo Indutrial de Guamaré/RN . No correlation between the studied variables (concentration of metal, concentration of extratant and agitation in the mixing chamer) could be obtained, because of possible factors which occurred as: variation in the composition of the studied sample, phenomena of precipitation and complexation of metals in the reservoir of feed, solubility of extratant
Utilização de microemulsões como agentes modificadores de superfícies para remoção de íons metálicos
Resumo:
The heavy metals are used in many industrial processes and when discharged to the environment can cause harmful effects to human, plants and animals. The adsorption technology has been used as an effective methodology to remove metallic ions. The search for new adsorbents motivated the development of this research, accomplished with the purpose of removing Cr (III) from aqueous solutions. Diatomite, chitosan, Filtrol 24TM and active carbon were used as adsorbents. To modify the adsorbent surface was used a bicontinuous microemulsion composed by water (25%), kerosene (25%), saponified coconut oil (10%) and as co-surfactant isoamyl or butyl alcohols (40%). With the objective of developing the best operational conditions the research started with the surfactant synthesis and after that the pseudo-ternary diagrams were plotted. It was decided to use the system composed with isoamyl alcohol as co-surfactant due its smallest solubility in water. The methodology to impregnate the microemulsion on the adsorbents was developed and to prepare each sample was used 10 g of adsorbent and 20 mL of microemulsion. The effect of drying time and temperature was evaluated and the best results were obtained with T = 65 ºC and t = 48 h. After evaluating the efficiency of the tested adsorbents it was decided to use chitosan and diatomite. The influence of the agitation speed, granule size, heavy metal synthetic solution concentration, pH, contact time between adsorbent and metal solution, presence or not of NaCl and others metallic ions in the solution (copper and nickel) were evaluated. The adsorption isotherms were obtained and Freundlich and Langmuir models were tested. The last one correlated better the data. With the purpose to evaluate if using a surfactant solution would supply similar results, the adsorbent surface was modified with this solution. It was verified that the adsorbent impregnated with a microemulsion was more effective than the one with a surfactant solution, showing that the organic phase (kerosene) was important in the heavy metal removal process. It was studied the desorption process and verified that the concentrated minerals acids removed the chromium from the adsorbent surface better than others tested solutions. The treatment showed to be effective, being obtained an increase of approximately 10% in the chitosan s adsorption capacity (132 mg of Cr3+ / g adsorbent), that was already quite efficient, and for diatomite, that was not capable to remove the metal without the microemulsion treatment, it was obtained a capacity of 10 mg of Cr3+ / g adsorbent, checking the applied treatment effectiveness
Resumo:
The disposal of sewage sludge is a growing problem face up to management of sanitary sevices. Otherwise, because its making process characteristic, the Ceramic Industry can tolerate the presence of this wastes as raw material. This study has as object to confirm the use of the sewage sluge in the Ceramic Industry like a sustentable alternative for its disposal. Futhermore, this study quests to evaluate the maximum proportion for incorporation of sludge wich result in technically and enviromentally suitable bricks. For found this proportion, the research consisted of (1) making of bricks in full scale, adde up 0%, 5%,10%, 15%, 20%, 25%,30%, 35% e 40% sludge, with size 220x105x45 mm, hand-molded by rammer and baked by industrial kiln; and (2) tecnical and enviromental evaluation of this bricks, according to Brazilian norms. The raw material uses were two distinct clays come from Goianinha/RN and sewage comes from a septic system tank and pumped into tank vehicle, of Natal/RN. The technical evaluation allowed to conclude the addiotion of the sludge brings about signifcant lost of mass and the water absorption grew up according to increase of sludge: every sludge-amended clay bricks absorved more water than control group. Thus, the compressive strength was signicantly decreased because the increase of sludge: bricks with 5% sludge added lost 45% of strength achieved at control group; the bricks made with 10 and 20% lost almost 70% of bigger strength. With up to 25% sludge added to the bricks, the streght decreased over 90%. Concerning heavy metal leaching, the two maximum proportion wich have tecnical approval, it means bricks sludge added with 15 and 20%, can say there is no risk of enviromental contamination using those bricks. This way, in this work context, it can to conclude the maximum proportion atends the technical and enviromental criterion is 20%
Resumo:
The accelerated growth of urban regions have produced relevant effects on water resources. Urban regions need an adequate institutional structure that can be able to face environmental demands and the adverse effects of land use on water resources. This study aims at analysing land use effects on heavy metals concentration in sediments and water, as well as making a comparative analysis involving water physical-chemical parameters. Applied methodology included both in loco water parameters measurement and water and bed sediment sampling at 8 sections along the fluvial system. Sample analysis was performed in laboratory in order to measure heavy metal concentrations. It was measured metal concentrations of Al, Cu, Pb, Cd, Fe, Ni and Zn. Once the samples were subjected to acid digestion (method 3050B), concentration values were measured by using atomic absorption spectrometry by flame (ICP-FLAA). The analysis results were compared with normative reference, these standards is intended to assess the risks of toxic substances in sediment and water management programs. The normative reference used in this work were: a) Ontario Ministry of the Environment and Energy (OMEE, 1993) b) Normative Netherlands (VROM, 2000); c) Normative Canadian (CCME, 1999); d) United States Environmental Protection Agency (USEPA, 1977), e) CONAMA Resolution No. 344/2004; f) CONAMA Resolution No. 357/2005. The high concentrations of iron (38,750 mg.g-1), Lead (1100 mg.g-1), Nickel (100 μg.g-1) and zinc (180 μg.g-1) detected sediments confirm the state of degradation of the aquatic system. Iron concentrations (1.08 mg.L-1), Aluminum (0.6 mg.L-1) and phosphorus (0.05 mg.L-1) present in the water are outside the established standards for human consumption
Resumo:
The contamination of the waters resources for wastewater from industrial, agricultural, and domestic sources is a serious environment problem, compromising its use for human consumption and agriculture. The Extremoz-RN Lake is an important freshwater source for the supply of the city of Natal, supplying a population of approximately 160,000 habitants. This aquatic body is located near an industrial pole which can be a serious risk factor for quality of its waters. The objectives of this study were examined the genotoxicity of Extremoz Lake between September of 2006 and January of 2008, by a combination of the Allium micronucleus test, piscine micronucleus test and the comet assay in erythrocytes from peripheral blood of Oreochromis niloticus. Additionally, the level of eight different heavy metals was quantified through spectrometry of atomic absorption of flame. The Allium test did not detect increase in the frequencies of micronucleus in none of the analyzed periods, however a strong cytotoxic activity was demonstrated for decrease in mitotic index in the analyses carried in April and July of 2007. Negative results had been detected in the frequencies of micronucleus in O. niloticus. A statistic significant increase was observed in the levels of DNA damage in comet assay carried in July of 2007. The results of the chemical analysis had detected increase in the levels of cadmium, chromium, copper, nickel, lead and zinc in different periods. These results demonstrated an alteration of the water s quality of the Extremoz Lake caused for the contamination for heavy metals and increase of DNA strand breaks. The use of biomonitoring program of the heavy metal and other pollutants with genotoxic potential combinated with genotoxicity assays is recommends.
Resumo:
The groundwater represents the most important freshwater supply of planet. Dailly, in all world a great amount of toxic and genotoxic material reaches the aquatic systems, mainly the aquifers. The Barreiras aquifer through of five water wells is responsible for the supplying of Universidade Federal do Rio Grande do Norte (UFRN). All water wells are polluted with nitrate and some heavy metals, two of them were disabled. The genotoxicity of groundwater samples from Barreiras Aquifer in UFRN was assessed using the Allium cepa test, the Ames test and the Salmonella typhymurium microsuspension test (Kado test). For the Allium cepa test the influence of the groundwater samples collected on macroscopic (root length, colour and form) and microscopic (root tip mitotic index, chromosome aberrations and micronucleus) parameters was examined. All water samples caused a significant increase of the chromosome and mitotic aberration frequency and reduction on the rooth growth compared to negative control. Bridges and chromosome stickness were the most frequent kind of aberration in dividing cells. Furthermore, breaks were also observed. No significant increase in the number of micronuclei was found in relation to the negative controls. For Ames test were used the Salmonella typhymurium strains TA98 and TA100 without metabolic activation, applying the direct method. Prior to the Kado test, organic fractions from the water samples were obtained through XAD resin concentration. The mutagenicity organic extracts were evaluated by Kado test using TA98 and TA100 strains, in the absence and presence of S9 mix (metabolic activation). The concentrations of seven heavy metal ions were measured in water samples, but only Ni, Cu and Cr levels exceeded the permissible maximum concentration for the natural reservoirs. The results obtained for mutagenic activity using the Ames test were negative in all raw water samples analyzed. Positive results in XAD4 extracts of water samples were obtained for TA98 in the presence of S9 mix for two stations. Concentrations of heavy metals and nitrate can be correlated with the toxicity and genotoxicity of water analyzed. The mutagenic effect detected with TA98 strain suggested that organic compounds (after metabolization) are involved with the mutagenicity detected in the samples analyzed. The data set obtained in this work indicated the presence of at least two classes of mutagens: organic and inorganic compounds
Resumo:
Leather tanneries generate effluents with high content of heavy metals, especially chromium, which is used in the mineral tanning process. Microemulsions have been studied in the extraction of heavy metals from aqueous solutions. Considering the problems related with the sediment resulting from the tanning process, due to its high content in chromium, in this work this sediment was characterized and microemulsion systems were applied for chromium removal. The extraction process consists in the removal of heavy metal ions present in an aqueous feeding solution (acid digestion solution) by a microemulsion system. First three different solid sludge digestion methods were evaluated, being chosen the method with higher digestion capacity. For this digestion method, seeking its optimization, was evaluated the influence of granule size, temperature and digestion time. Experimental results showed that the method proposed by USEPA (Method A) was the most efficient one, being obtained 95.77% of sample digestion. Regarding to the evaluated parameters, the best results were achieved at 95°C, 14 Mesh granule size, and 60 minutes digestion time. For chromium removal, three microemulsion extraction methods were evaluated: Method 1, in a Winsor II region, using as aqueous phase the acid digestion solution; Method 2, in a Winsor IV region, being obtained by the addition of the acid digestion solution to a microemulsion phase, whose aqueous phase is distilled water, until the formation of Winsor II system; and Method 3, in a Winsor III region, consisting in the formation of a Winsor III region using as aqueous phase the acid digestion solution, diluted in NaOH 0.01N. Seeking to optimize the extraction process only Method 1 (Systems I, II, and VIII) and Method 2 (System IX) were evaluated, being chosen points inside the interest regions (studied domains) to study the influence of contact time and pH in the extraction percentiles. The studied systems present the following compositions: System I: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase 2% NaCl solution; System II: Aqueous phase Acid digestion solution with pH adjusted using KOH (pH 3.5); System VIII: Aqueous phase - Acid digestion solution (pH 0.06); and System IX Aqueous phase Distilled water (pH 10.24), the other phases of Systems II, VIII and IX are similar to System I. Method 2 showed to be the more efficient one regarding chromium extraction percentile (up to 96.59% - pH 3.5). Considering that with Method 2 the microemulsion region only appears in the Winsor II region, it was studied Method 3 (System X) for the evaluation and characterization of a triphasic system, seeking to compare with a biphases system. System X is composed by: Surfactant Saponified coconut oil, Cosurfactant 1-Butanol, Oil phase Kerosene, Aqueous phase Acid digestion solution diluted with water and with its pH adjusted using 0.01N NaOH solution. The biphasic and triphasic microemulsion systems were analyzed regarding its viscosity, extraction efficiency and drop effective diameter. The experimental results showed that for viscosity studies the obtained values were low for all studied systems, the diameter of the drop is smaller in the Winsor II region, with 15.5 nm, reaching 46.0 nm in Winsor III region, being this difference attributed to variations in system compositions and micelle geometry. In chromium extraction, these points showed similar results, being achieved 99.76% for Winsor II system and 99.62% for Winsor III system. Winsor III system showed to be more efficient due to the obtaining of a icroemulsion with smaller volume, with the possibility to recover the oil phase in excess, and the use of a smaller proportion of surfactant and cosurfactant (C/S)
Resumo:
The environmental impact due to the improper disposal of metal-bearing industrial effluents imposes the need of wastewater treatment, since heavy metals are nonbiodegradable and hazardous substances that may cause undesirable effects to humans and the environment. The use of microemulsion systems for the extraction of metal ions from wastewaters is effective when it occurs in a Winsor II (WII) domain, where a microemulsion phase is in equilibrium with an aqueous phase in excess. However, the microemulsion phase formed in this system has a higher amount of active matter when compared to a WIII system (microemulsion in equilibrium with aqueous and oil phases both in excess). This was the reason to develop a comparative study to evaluate the efficiency of two-phases and three-phases microemulsion systems (WII and WIII) in the extraction of Cu+2 and Ni+2 from aqueous solutions. The systems were composed by: saponified coconut oil (SCO) as surfactant, n-Butanol as cosurfactant, kerosene as oil phase, and synthetic solutions of CuSO4.5H2O and NiSO4.6H2O, with 2 wt.% NaCl, as aqueous phase. Pseudoternary phase diagrams were obtained and the systems were characterized by using surface tension measurements, particle size determination and scanning electron microscopy (SEM). The concentrations of metal ions before and after extraction were determined by atomic absorption spectrometry. The extraction study of Cu+2 and Ni+2 in the WIII domain contributed to a better understanding of microemulsion extraction, elucidating the various behaviors presented in the literature for these systems. Furthermore, since WIII systems presented high extraction efficiencies, similar to the ones presented by Winsor II systems, they represented an economic and technological advantage in heavy metal extraction due to a small amount of surfactant and cosurfactant used in the process and also due to the formation of a reduced volume of aqueous phase, with high concentration of metal. Considering the reextraction process, it was observed that WIII system is more effective because it is performed in the oil phase, unlike reextraction in WII, which is performed in the aqueous phase. The presence of the metalsurfactant complex in the oil phase makes possible to regenerate only the surfactant present in the organic phase, and not all the surfactant in the process, as in WII system. This fact allows the reuse of the microemulsion phase in a new extraction process, reducing the costs with surfactant regeneration
Resumo:
The water quality of many reservoirs in the world has been reduced due to percolation of contaminants to water, which can have natural or anthropogenic origin, increasing the level of genotoxic compounds in aquatic ecosystems. This fact has contributed to the reduction of environmental quality, and commitment the health of living beings that inhabit these ecosystems, including the human population. In this backdrop of reduced water quality, is the Lucrecia dam, which is a major surface water reservoirs by volume of semi-arid region of Rio Grande do Norte, and that has shown contamination by heavy metals, cyanobacteria toxic and the natural presence of Radon. The population that use this source has been showing high rates of cancer, popularly associated with the consumption of this water, with a prevalence about three times higher compared to the whole state of Rio Grande do Norte. Based on this, the present study aimed to evaluate the mutagenic potencial of surface water from the Lucrecia dam, using the Micronucleus Test in Tradescantia pallida (Trad-MN) and in human peripheral blood lymphocytes (CBMN) assay, as well as identify the concentrations of some heavy metals in this water. Water samples were collected on a dry season and a rainy season, in two distinct points. Moreover, in order to bring a completely view about the relationship of man-health-environment in this local, through the knowledge of knowing / acting environmental from residents of Lucrecia, and the use and perceptions they have about the dam of your city, a study of Environmental Perception was carried out with local residents. The results obtained for the both micronucleus test, showed significant results for the three points analyzed. The strongest mutagenic effect was observed in the dry season for both assays. Chemical analyses detected an increase of heavy metal levels in different points and season above the maximum allowed by legislation. Regarding the study of Environmental Perception with local residents, it was observed the knowledge of the environment that the residents have, as well as the strong ties and perceptions with the dam of the city. Thus, the combination of these two aspects (the genetic toxicity tests conducted in the dam together with analysis of environmental perception with the residents of Lucrecia) allowed to draw a more complete diagnosis on the local situation
Resumo:
This study is conducted in the estuary of the rivers Jundiaí and Potengi, one of the most important estuaries of Rio Grande do Norte, which suffers a strong anthropogenic influence from neighboring cities. According to Resolution 344/2005 environments that have high concentrations of metals such as arsenic, cadmium, lead and mercury need ecotoxicological tests. This study aims to evaluate the heavy metals contamination in the estuary through analysis of sediment collected at four points distributed from Macaíba to Natal city, and in the crab Uçá, Ucides cordatus. The study aims also to evaluate the effects of sediment toxicity in the tests organisms Leptocheirus plumulosus. To obtain data about the concentrations of heavy metals in the environment, sediments were collected in January and May 2011 and crab Uçá was collected in June 2011. On the other hand the monitoring was carried out through toxicological tests with sediment collected from July to October 2011. During the collection of sediment samples the physico-chemical parameters of water (dissolved oxygen, pH, chloride, turbidity, conductivity and temperature) were measured by using multi-parametric probe (TROLL 9500). It was possible to identify contamination by metals such as lead, cadmium, arsenic and copper both in the sediment and in the Uçá crab, which characterizes that the consumption of this crustacean may be a risk to human health. Once the concentrations of metals were identified, toxicology tests were performed and revealed toxic effect to organisms in at least one of the four months studied. Point 2 was classified as toxic in three of the four months studied . The heavy metal contamination is a risk to the environment, to aquatic organisms and to the community which survives of resources taken from the environment
Resumo:
Hexavalent chromium is a heavy metal present in various industrial effluents, and depending on its concentration may cause irreparable damage to the environment and to humans. Facing this surrounding context, this study aimed on the application of electrochemical methods to determine and remove the hexavalent chromium (Cr6+) in simulated wastewater. To determine was applied to cathodic stripping voltammetry (CSV) using ultra trace graphite electrodes ultra trace (work), Ag/AgCl (reference) and platinum (counter electrode), the samples were complexed with 1,5- diphenylcarbazide and then subjected to analysis. The removal of Cr6+ was applied electrocoagulation process (EC) using Fe and Al electrodes. The variables that constituted the factorial design 24, applied to optimizing the EC process, were: current density (5 and 10 mA.cm-2), temperature (25 and 60 ºC), concentration (50 and 100 ppm) and agitation rate (400 and 600 RPM). Through the preliminary test it was possible the adequacy of applying the CSV for determining of Cr6+, removed during the EC process. The Fe and Al electrodes as anodes sacrifice showed satisfactory results in the EC process, however Fe favored complete removal in 30 min, whereas with Al occurred at 240 min. In the application of factorial design 24 and analysis of Response Surface Methodology was possible to optimize the EC process for removal of Cr6+ in H2SO4 solution (0.5 mol.L-1), in which the temperature, with positive effect, was the variable that presented higher statistical significance compared with other variables and interactions, while in optimizing the EC process for removal of Cr6+ in NaCl solution (0.1 mol.L-1) the current density, with positive effect, and concentration, with a negative effect were the variables that had greater statistical significance with greater statistical significance compared with other variables and interactions. The utilization of electrolytes supports NaCl and Na2SO4 showed no significant differences, however NaCl resulted in rapid improvement in Cr6+ removal kinetics and increasing the NaCl concentration provided an increase in conductivity of the solution, resulting in lower energy consumption. The wear of the electrodes evaluated in all the process of EC showed that the Al in H2SO4 solution (0.5 mol.L-1), undergoes during the process of anodization CE, then the experimental mass loss is less than the theoretical mass loss, however, the Fe in the same medium showed a loss of mass greater experimental estimated theoretically. This fact is due to a spontaneous reaction of Fe with H2SO4, and when the reaction medium was the NaCl and Na2SO4 loss experimental mass approached the theoretical mass loss. Furthermore, it was observed the energy consumption of all processes involved in this study had a low operating cost, thus enabling the application of the EC process for treating industrial effluents. The results were satisfactory, it was achieved complete removal of Cr6+ in all processes used in this study.