4 resultados para hardware implementation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This study shows the implementation and the embedding of an Artificial Neural Network (ANN) in hardware, or in a programmable device, as a field programmable gate array (FPGA). This work allowed the exploration of different implementations, described in VHDL, of multilayer perceptrons ANN. Due to the parallelism inherent to ANNs, there are disadvantages in software implementations due to the sequential nature of the Von Neumann architectures. As an alternative to this problem, there is a hardware implementation that allows to exploit all the parallelism implicit in this model. Currently, there is an increase in use of FPGAs as a platform to implement neural networks in hardware, exploiting the high processing power, low cost, ease of programming and ability to reconfigure the circuit, allowing the network to adapt to different applications. Given this context, the aim is to develop arrays of neural networks in hardware, a flexible architecture, in which it is possible to add or remove neurons, and mainly, modify the network topology, in order to enable a modular network of fixed-point arithmetic in a FPGA. Five synthesis of VHDL descriptions were produced: two for the neuron with one or two entrances, and three different architectures of ANN. The descriptions of the used architectures became very modular, easily allowing the increase or decrease of the number of neurons. As a result, some complete neural networks were implemented in FPGA, in fixed-point arithmetic, with a high-capacity parallel processing
Resumo:
Blind Source Separation (BSS) refers to the problem of estimate original signals from observed linear mixtures with no knowledge about the sources or the mixing process. Independent Component Analysis (ICA) is a technique mainly applied to BSS problem and from the algorithms that implement this technique, FastICA is a high performance iterative algorithm of low computacional cost that uses nongaussianity measures based on high order statistics to estimate the original sources. The great number of applications where ICA has been found useful reects the need of the implementation of this technique in hardware and the natural paralelism of FastICA favors the implementation of this algorithm on digital hardware. This work proposes the implementation of FastICA on a reconfigurable hardware platform for the viability of it's use in blind source separation problems, more specifically in a hardware prototype embedded in a Field Programmable Gate Array (FPGA) board for the monitoring of beds in hospital environments. The implementations will be carried out by Simulink models and it's synthesizing will be done through the DSP Builder software from Altera Corporation.
Resumo:
Removing inconsistencies in a project is a less expensive activity when done in the early steps of design. The use of formal methods improves the understanding of systems. They have various techniques such as formal specification and verification to identify these problems in the initial stages of a project. However, the transformation from a formal specification into a programming language is a non-trivial task and error prone, specially when done manually. The aid of tools at this stage can bring great benefits to the final product to be developed. This paper proposes the extension of a tool whose focus is the automatic translation of specifications written in CSPM into Handel-C. CSP is a formal description language suitable for concurrent systems, and CSPM is the notation used in tools support. Handel-C is a programming language whose result can be compiled directly into FPGA s. Our extension increases the number of CSPM operators accepted by the tool, allowing the user to define local processes, to rename channels in a process and to use Boolean guards on external choices. In addition, we also propose the implementation of a communication protocol that eliminates some restrictions on parallel composition of processes in the translation into Handel-C, allowing communication in a same channel between multiple processes to be mapped in a consistent manner and that improper communication in a channel does not ocurr in the generated code, ie, communications that are not allowed in the system specification
Resumo:
This Thesis main objective is to implement a supporting architecture to Autonomic Hardware systems, capable of manage the hardware running in reconfigurable devices. The proposed architecture implements manipulation, generation and communication functionalities, using the Context Oriented Active Repository approach. The solution consists in a Hardware-Software based architecture called "Autonomic Hardware Manager (AHM)" that contains an Active Repository of Hardware Components. Using the repository the architecture will be able to manage the connected systems at run time allowing the implementation of autonomic features such as self-management, self-optimization, self-description and self-configuration. The proposed architecture also contains a meta-model that allows the representation of the Operating Context for hardware systems. This meta-model will be used as basis to the context sensing modules, that are needed in the Active Repository architecture. In order to demonstrate the proposed architecture functionalities, experiments were proposed and implemented in order to proof the Thesis hypothesis and achieved objectives. Three experiments were planned and implemented: the Hardware Reconfigurable Filter, that consists of an application that implements Digital Filters using reconfigurable hardware; the Autonomic Image Segmentation Filter, that shows the project and implementation of an image processing autonomic application; finally, the Autonomic Autopilot application that consist of an auto pilot to unmanned aerial vehicles. In this work, the applications architectures were organized in modules, according their functionalities. Some modules were implemented using HDL and synthesized in hardware. Other modules were implemented kept in software. After that, applications were integrated to the AHM to allow their adaptation to different Operating Context, making them autonomic.