5 resultados para graphics processing unit (GPU)
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This paper aims to design and develop a control and monitoring system of vending machines, based on a Central Processing Unit with peripheral Internet communication. Coupled with the condom vending machines, a data acquisition module will be connected to the original circuits in order to collect and send, via internet, the information to the healthy government agencies, in the form of charts and reports. In the face of this, such agencies may analyze these data and compare them with the rates of reduction, in medium or long term, of the STD/AIDS in their respective regions, after the implementation of these vending machines, together with the conventional preventing programs. Reading the methodology, this paper is about an explaining and bibliography research, with the aspect of a qualitative-quantitative methodology, presenting a deductive method of approach and an indirect documentation technique research. About the results of the tests and simulations, we concluded that the implementation of this system will have the same success in any other type of dispenser machine
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
In the oil industry, natural gas is a vital component of the world energy supply and an important source of hydrocarbons. It is one of the cleanest, safest and most relevant of all energy sources, and helps to meet the world's growing demand for clean energy in the future. With the growing share of natural gas in the Brazil energy matrix, the main purpose of its use has been the supply of electricity by thermal power generation. In the current production process, as in a Natural Gas Processing Unit (NGPU), natural gas undergoes various separation units aimed at producing liquefied natural gas and fuel gas. The latter should be specified to meet the thermal machines specifications. In the case of remote wells, the process of absorption of heavy components aims the match of fuel gas application and thereby is an alternative to increase the energy matrix. Currently, due to the high demand for this raw gas, research and development techniques aimed at adjusting natural gas are studied. Conventional methods employed today, such as physical absorption, show good results. The objective of this dissertation is to evaluate the removal of heavy components of natural gas by absorption. In this research it was used as the absorbent octyl alcohol (1-octanol). The influence of temperature (5 and 40 °C) and flowrate (25 and 50 ml/min) on the absorption process was studied. Absorption capacity expressed by the amount absorbed and kinetic parameters, expressed by the mass transfer coefficient, were evaluated. As expected from the literature, it was observed that the absorption of heavy hydrocarbon fraction is favored by lowering the temperature. Moreover, both temperature and flowrate favors mass transfer (kinetic effect). The absorption kinetics for removal of heavy components was monitored by chromatographic analysis and the experimental results demonstrated a high percentage of recovery of heavy components. Furthermore, it was observed that the use of octyl alcohol as absorbent was feasible for the requested separation process.
Resumo:
The vascular segmentation is important in diagnosing vascular diseases like stroke and is hampered by noise in the image and very thin vessels that can pass unnoticed. One way to accomplish the segmentation is extracting the centerline of the vessel with height ridges, which uses the intensity as features for segmentation. This process can take from seconds to minutes, depending on the current technology employed. In order to accelerate the segmentation method proposed by Aylward [Aylward & Bullitt 2002] we have adapted it to run in parallel using CUDA architecture. The performance of the segmentation method running on GPU is compared to both the same method running on CPU and the original Aylward s method running also in CPU. The improvemente of the new method over the original one is twofold: the starting point for the segmentation process is not a single point in the blood vessel but a volume, thereby making it easier for the user to segment a region of interest, and; the overall gain method was 873 times faster running on GPU and 150 times more fast running on the CPU than the original CPU in Aylward
Resumo:
The visualization of three-dimensional(3D)images is increasigly being sed in the area of medicine, helping physicians diagnose desease. the advances achived in scaners esed for acquisition of these 3d exames, such as computerized tumography(CT) and Magnetic Resonance imaging (MRI), enable the generation of images with higher resolutions, thus, generating files with much larger sizes. Currently, the images of computationally expensive one, and demanding the use of a righ and computer for such task. The direct remote acess of these images thruogh the internet is not efficient also, since all images have to be trasferred to the user´s equipment before the 3D visualization process ca start. with these problems in mind, this work proposes and analyses a solution for the remote redering of 3D medical images, called Remote Rendering (RR3D). In RR3D, the whole hedering process is pefomed a server or a cluster of servers, with high computational power, and only the resulting image is tranferred to the client, still allowing the client to peform operations such as rotations, zoom, etc. the solution was developed using web services written in java and an architecture that uses the scientific visualization packcage paraview, the framework paraviewWeb and the PACS server DCM4CHEE.The solution was tested with two scenarios where the rendering process was performed by a sever with graphics hadwere (GPU) and by a server without GPUs. In the scenarios without GPUs, the soluction was executed in parallel with several number of cores (processing units)dedicated to it. In order to compare our solution to order medical visualization application, a third scenario was esed in the rendering process, was done locally. In all tree scenarios, the solution was tested for different network speeds. The solution solved satisfactorily the problem with the delay in the transfer of the DICOM files, while alowing the use of low and computers as client for visualizing the exams even, tablets and smart phones