2 resultados para gradient test
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In survival analysis, the response is usually the time until the occurrence of an event of interest, called failure time. The main characteristic of survival data is the presence of censoring which is a partial observation of response. Associated with this information, some models occupy an important position by properly fit several practical situations, among which we can mention the Weibull model. Marshall-Olkin extended form distributions other a basic generalization that enables greater exibility in adjusting lifetime data. This paper presents a simulation study that compares the gradient test and the likelihood ratio test using the Marshall-Olkin extended form Weibull distribution. As a result, there is only a small advantage for the likelihood ratio test
Resumo:
Survival models deals with the modeling of time to event data. However in some situations part of the population may be no longer subject to the event. Models that take this fact into account are called cure rate models. There are few studies about hypothesis tests in cure rate models. Recently a new test statistic, the gradient statistic, has been proposed. It shares the same asymptotic properties with the classic large sample tests, the likelihood ratio, score and Wald tests. Some simulation studies have been carried out to explore the behavior of the gradient statistic in fi nite samples and compare it with the classic statistics in diff erent models. The main objective of this work is to study and compare the performance of gradient test and likelihood ratio test in cure rate models. We first describe the models and present the main asymptotic properties of the tests. We perform a simulation study based on the promotion time model with Weibull distribution to assess the performance of the tests in finite samples. An application is presented to illustrate the studied concepts