11 resultados para glucomannano idrolisi enzimatica drug delivery

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Amphotericin B (AmB), an antifungal agent that presents a broad spectrum of activity, remains the gold standard in the antifungal therapy. However, sometimes the high level of toxicity forbids its clinical use. The aim of this work was to evaluate and compare the efficacy and toxicity in vitro of Fungizon™ (AmB-D) and two new different AmB formulations. Methods: three products were studied: Fungizon™, and two Fungizon™ /Lipofundin™ admixtures, which were diluted through two methods: in the first one, Fungizon™ was previously diluted with water for injection and then, in Lipofundin™ (AmB-DAL); the second method consisted of a primary dilution of AmB-D as a powder in the referred emulsion (AmB-DL). For the in vitro assay, two cell models were used: Red Blood Cells (RBC) from human donors and Candida tropicallis (Ct). The in vitro evaluation (K+ leakage, hemoglobin leakage and cell survival rate-CSR) was performed at four AmB concentrations (from 50 to 0.05mg.L-1). Results: The results showed that the action of AmB was not only concentration dependent, but also cellular type and vehicle kind dependent. At AmB concentrations of 50 mg.L-1, although the hemoglobin leakage for AmB-D was almost complete (99.51), for AmB-DAL and AmB-DL this value tended to zero. The p = 0.000 showed that AmB-D was significantly more hemolytic. Conclusion: The Fungizon™- Lipofundin™ admixtures seem to be the more valuable AmB carrier systems due to their best therapeutic index presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan membranes have been modified by plasma, utilizing the following gases: nitrogen (N2), methane (CH4), argon (Ar), oxygen (O2) and hydrogen. The modified membranes by plasma were compared to the unmodified ones. The membranes were characterized by absorption assay, contact angle, atomic force microscopy (AFM). Also, permeability assay of sodium sulfamerazine from such membranes were carried out. Through the absorption assay and contact angle it was possible to obtain information of the wettability of the membranes and what changes the plasma treatment can promote in relation to it. The plasma treatment using oxygen promoted increase of the wetability and swelling while the samples treated with methane decrease of the wetability and swelling. Through the Optical Emission Spectroscopy (OES) it was possible to identify which species were present in the plasma during the treatment. And through the AFM analysis it was possible to observe the changes nanotopography occurred on the surface of the samples. Permeability assay were archived for all treated membranes and compared to no treated ones. Due to that assay it was possible verify which the plasma treatment increased the permeability spectrum of the membranes which has varied from 1,4548 *10-5cm2.min-1 to 2,7713*10-5cm2.min-1. Chitosan membranes with permeability varied are importance in systems drug delivery, to liberate a wide variety of drugs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advances in medicine, life expectancy of the world population has grown considerably in recent decades. Studies have been performed in order to maintain the quality of life through the development of new drugs and new surgical procedures. Biomaterials is an example of the researches to improve quality of life, and its use goes from the reconstruction of tissues and organs affected by diseases or other types of failure, to use in drug delivery system able to prolong the drug in the body and increase its bioavailability. Biopolymers are a class of biomaterials widely targeted by researchers since they have ideal properties for biomedical applications, such as high biocompatibility and biodegradability. Poly (lactic acid) (PLA) is a biopolymer used as a biomaterial and its monomer, lactic acid, is eliminated by the Krebs Cycle (citric acid cycle). It is possible to synthesize PLA through various synthesis routes, however, the direct polycondensation is cheaper due the use of few steps of polymerization. In this work we used experimental design (DOE) to produce PLAs with different molecular weight from the direct polycondensation of lactic acid, with characteristics suitable for use in drug delivery system (DDS). Through the experimental design it was noted that the time of esterification, in the direct polycondensation, is the most important stage to obtain a higher molecular weight. The Fourier Transform Infrared (FTIR) spectrograms obtained were equivalent to the PLAs available in the literature. Results of Differential Scanning Calorimetry (DSC) showed that all PLAs produced are semicrystalline with glass transition temperatures (Tgs) ranging between 36 - 48 °C, and melting temperatures (Tm) ranging from 117 to 130 °C. The PLAs molecular weight characterized from Size Exclusion Chromatography (SEC), varied from 1000 to 11,000 g/mol. PLAs obtained showed a fibrous morphology characterized by Scanning Electron Microscopy (SEM)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Micro and nanoparticulate systems as drug delivery carriers have achieved successful therapeutic use by enhancing efficacy and reducing toxicity of potent drugs. The improvement of pharmaceutical grade polymers has allowed the development of such therapeutic systems. Microencapsulation is a process in which very thin coatings of inert natural or synthetic polymeric materials are deposited around microsized particles of solids or around droplets. Products thus formed are known as microparticles. Xylan is a natural polymer abundantly found in nature. It is the most common hemicellulose, representing more than 60% of the polysaccharides existing in the cell walls of corn cobs, and is normally degraded by the bacterial enzymes present in the colon of the human body. Therefore, this polymer is an eligible material to produce colon-specific drug carriers. The aim of this study was to evaluate the technological potential of xylan for the development of colon delivery systems for the treatment of inflammatory bowel diseases. First, coacervation was evaluated as a feasible method to produce xylan microcapsules. Afterwards, interfacial cross-linking polymerization was studied as a method to produce microcapsules with hydrophilic core. Additionally, magnetic xylan-coated microcapsules were prepared in order to investigate the ability of producing gastroresistant systems. Besides, the influence of the external phase composition on the production and mean diameter of microcapsules produced by interfacial cross-linking polymerization was investigated. Also, technological properties of xylan were determined in order to predict its possible application in other pharmaceutical dosage forms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several pharmaceutical products have been developed in recent years aiming to enhance the treatment of diseases by increasing the effectiveness of drugs. Many of these new products are based on new drug delivery systems. Among these, microemulsions, which were first studied in 1943 by Hoar and Schulman, is of great interest. Microemulsion can be defined as a thermodynamically stable, isotropic, translucent and transparent system of two immiscible liquids stabilized by a surfactant film located in the oil / water interface. The aim os this work was the incorporation of Amphotericin B and Simvasatin to a microemulsion system and analyzes its physicochemical properties and their therapeutical activity when incorporated into this system. Some very promising results were achieved as the reduction of the toxicity and maintenance of the efficacy of the Amphotericin B incorpored into a microemulsion, which was demonstrated in the in vitro pharmacotoxicological study. As for the incorporation of Simvastatin in microemulsion, it was observed a significant improvement in the potential antiinflammatory and anti-infective properties when the system was use to treat infected wounds (simvastatin pleiotropic effects). Therefore, it can be concluded that the incorporation of these drugs into microemulsion system reveal the potential of microemulsions as a promising and novel dosage form, qualifying them for future trials in order to make them available in the pharmaceutical market

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The topical corneal application of antimitotic mitomycin-C (MMC) during refractive surgery is still characterized by a lack of standardization and considerable empirism. For this reason the creation of a system capable of reliable drug delivery represents a beneficial innovation for patients submitted to these procedures. Objective: Elaborate a new MMC delivery system during the transoperatory period of photorefractive keratectomy (PRK) followed by patent application. Methods: The project consists of an in vitro experimental study to create an MMC (0.02%) release system. The drug was impregnated in sterile Whatman® 41 paper filter discs with a diameter of 8 mm. After drying, the discs were applied to antibiogram plates seeded with Staphylococcus epidermidis (American Type Culture Collection ATCC 12228), followed by the addition of a drop of sterile water. At the end of 1 minute, the discs were removed and the plates incubated for 48 hours at 35oC. Mean drop volume in the collyrium flasks was measured using analytical balance weighing. The inhibition halo (mm) was correlated with the MMC impregnated into the disc. After completion of the invention design a patent application was lodged at the National Institute of Industrial Property. Results: The correspondence between MMC-produced inhibition halos indicated that a dose of 16μg was ideal for impregnating into the discs. The mean drop volume obtained from the collyrium flasks was 37.7 μL. A minute after the application of one drop of balanced saline solution, the system released an adequate concentration for PRK surgery. Conclusion: A new MMC delivery system was created for transoperatory application in photorefractive keratectomy (PRK). Publication of the patent application (number PI 0704739-8) gives the authors exclusive intellectual property rights. The study was sponsored by Ophthalmos Indústria e Comércio de Produtos Farmacêuticos S.A. (São Paulo-SP, Brazil) and received the indispensable scientific contribution of researchers from the fields of Pharmacy, Medicine, Biology, Statistics and Law, characterizing the work as multidisciplinary, in accordance with norms established by the Postgraduate Health Sciences Program of the Federal University of Rio Grande do Norte (UFRN)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic targeting is being investigated as a means of local delivery of drugs, combining precision, minimal surgical intervention, and satisfactory concentration of the drug in the target region. In view of these advantages, it is a promising strategy for improving the pharmacological response. Magnetic particles are attracted by a magnetic field gradient, and drugs bound to them can be driven to their site of action by means of the selective application of magnetic field on the desired area. Helicobacter pylori is the commonest chronic bacterial infection. The treatment of choice has commonly been based upon a triple therapy combining two antibiotics and an anti-secretory agent. Furthermore, an extended-release profile is of utmost importance for these formulations. The aim of this work was to develop a magnetic system containing the antibiotic amoxicillin for oral magnetic drug targeting. First, magnetic particles were produced by coprecipitation of iron salts in alkaline medium. The second step was coating the particles and amoxicillin with Eudragit® S-100 by spray-drying technique. The system obtained demonstrated through the characterization studies carried out a possible oral drug delivery system, consisting in magnetite microparticles and amoxicillin, coated with a polymer acid resistant. This system can be used to deliver drugs to the stomach for treatment of infections in this organ. Another important finding in this work is that it opens new prospects to coat magnetic microparticles by the technique of spray-drying.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Colon-specific drug delivery systems have attracted increasing attention from the pharmaceutical industry due to their ability of treating intestinal bowel diseases (IBD), which represent a public health problem in several countries. In spite of being considered a quite effective molecule for the treatment of IBD, mesalazine (5-ASA) is rapidly absorbed in the upper gastrointestinal tract and its systemic absorption leads to risks of adverse effects. The aim of this work was to develop a microparticulate system based on xylan and Eudragit® S- 100 (ES100) for colon-specific delivery of 5-ASA and evaluate the interaction between the polymers present in the systems. Additionaly, the physicochemical and rheological properties of xylan were also evaluated. Initially, xylan was extracted from corn cobs and characterized regarding the yield and rheological properties. Afterwards, 10 formulations were prepared in different xylan and ES100 weight ratios by spray-drying the polymer solutions in 0.6N NaOH and phosphate buffer pH 7.4. In addition, 3 formulations consisting of xylan microcapsules were produced by interfacial cross-linking polymerization and coated by ES100 by means of spray-drying in different polymer weight ratios of xylan and ES100. The microparticles were characterized regarding yield, morphology, homogeneity, visual aspect, crystallinity and thermal behavior. The polymer interaction was investigated by infrared spectroscopy. The extracted xylan was presented as a very fine and yellowish powder, with mean particle size smaller than 40μm. Regarding the rheological properties of xylan, they demonstrated that this polymer has a poor flow, low density and high cohesiveness. The microparticles obtained were shown to be spherical and aggregates could not be observed. They were found to present amorphous structure and have a very high thermal stability. The yield varied according to the polymer ratios. Moreover, it was confirmed that the interaction between xylan and ES100 occurs only by means of physical aggregation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The drug targeting has been the subject of extensive studies in order to develop site-specific treatments that minimize side effects and become more effective anticancer therapy. Despite considerable interest in this class, drugs like antibiotics also have limitations, and have been neglected. Using new pharmaceutical technologies, the use of magnetic vectors appear as promising candidate for drug delivery systems in several studies. Small magnetic particles bound to the drug of interest can be modulated according to the orientation of a magnet outside the body, locating and holding in a specific site. In this work, we propose the use of High Energy Milling (HEM) for synthesis of a magnetic vector with characteristics suitable for biomedical applications by intravenous administration, and for the formation of an oxacillin-carrier complex to obtain a system for treating infections caused by Staphylococcus aureus. The results of the variation of milling time showed that the size and structural properties of the formed material change with increasing milling time, and in 60 hours we found the sample closest to the ideal conditions of the material. The vector-drug system was studied in terms of structural stability and antimicrobial activity after the milling process, which revealed the integrity of the oxacillin molecule and its bactericidal action on cultures of Staphylococcus aureus ATCC

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New drug delivery systems have been used to increase chemotherapy efficacy due the possible drug resistance of cancer cells. Poly (lactic acid) (PLA) microparticles are able to reduce toxicity and prolong methotrexate (MTX) release. In addition, the use of PLA/poloxamer polymer blends can improve drug release due to changes in the interaction of particles with biological surfaces. The aim of this study was developing spray dried biodegradable MTX-loaded microparticles and evaluate PLA interactions with different kinds of Pluronic® (PLUF127 and PLUF68) in order to modulate drug release. The variables included different drug:polymer (1:10, 1:4.5, 1:3) and polymer:copolymer ratios (25:75, 50:50, 75:25). The precision and accuracy of spray drying method was confirmed assessing drug loading into particles (75.0- 101.3%). The MTX/PLA microparticles showed spherical shape with an apparently smooth surface, which was dependent on the PLU ratio used into blends particles. XRD and thermal analysis demonstrated that the drug was homogeneously dispersed into polymer matrix, whereas the miscibility among components was dependent on the used polymer:copolymer ratio. No new drug- polymer bond was identified by FTIR analysis. The in vitro performance of MTX-loaded PLA microparticles demonstrated an extended-release profile fitted using Korsmeyer- Peppas kinetic model. The PLU accelerated drug release rate possible due PLU leached in the matrix. Nevertheless, drug release studies carried out in cell culture demonstrated the ability of PLU modulating drug release from blend microparticles. This effect was confirmed by cytotoxicity observed according to the amount of drug released as a function of time. Thus, studied PLU was able to improve the performance of spray dried MTX-loaded PLA microparticles, which can be successfully used as carries for modulated drug delivery with potential in vivo application

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foam was developed as a novel vehicle for streptokinase with the purpose of increasing the contact time and area between the fibrinolytic and the target thrombus, which would lead to a greater therapeutic efficacy at lower doses, decreasing the drug s potential to cause bleeding. Fibrinolytic foams were prepared using CO2 and human albumin (at different v:v ratios), as the gas and liquid phases, respectively, and streptokinase at a low total dose (100,000 IU) was used as fibrinolytic agent conveyed in 1 mL of foam and in isotonic saline solution. The foams were characterized as foam stability and apparent viscosity. The thrombolytic effect of the streptokinase foam was determined in vitro as thrombus lysis and the results were compared to those of a fibrinolytic solution (prepared using the same dose of streptokinase) and foam without the fibrinolytic. In vitro tests were conducted using fresh clots were weighed and placed in test tubes kept at 37 ° C. All the samples were injected intrathrombus using a multiperforated catheter. The results showed that both foam stability and apparent viscosity increased with the increase in the CO2:albumin solution ratio and therefore, the ratio of 3:1 was used for the incorporation of streptokinase. The results of thrombus lysis showed that the streptokinase foam presented the highest thrombolytic activity (44.78 ± 9.97%) when compared to those of the streptokinase solution (32.07 ± 3.41%) and the foam without the drug (19.2 ± 7.19%). We conclude that fibrinolytic foam showed statistically significant results regarding the enhancement of the lytic activity of streptokinase compared to the effect of the prepared saline solution, thus it can be a promising alternative in the treatment of thrombosis. However, in vivo studies are needed in order to corroborate the results obtained in vitro