3 resultados para gibberellic acid

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The umbu tree (Spondias tuberosa Arruda) is a fruit native to the northeast of Brazil with great economic, social and ecological importance for the northeastern semi-arid region. Despite its role, the umbu tree has suffered negative pressure thanks to cluttered extractivism and to negative selection of its fruits, which as the deforestation and the dormancy of seeds contribute to the decrease of its production year after year, making necessary studies that contribute to the improvement of this specie and its conservation. Given the risks to the conservation of the specie and its usefulness to the population, the association between plant biotechnology, for being a tool that can be used to increase its production. and the perception of gathering communities, by valuing the point of view and the knowledge of the population, can facilitate its conservation. This work aimed to develop methods of propagation for umbu tree as well as contribute to its conservation by using biotechnology, with specific objectives to contribute to the conservation of this species; determine concentrations of BAP and ANA in the formation of buds; testing the efficiency of different substrates and concentrations of gibberellic acid on germination in vitro and ex vitro, as well as capture the perception of families in communities that engage in the gathering of umbu. To study the germination, the seeds were inoculated in different substrates (vermiculite, vermiculite + clay, clay, clay + manure and manure + vermiculite) and in different concentrations of gibberellic acid (0 mg, 250 g and 500 mg). For the formation of buds BAP to 0.1 mg-1 was associated with different concentrations of ANA (0.2; 0.4; 0.8mg.L-1). The study of perception was conducted by applying semi-structured questionnaire with Malhada Vermelha community. The experiments resulted in vermiculite and concentration of 500 mg gibberellic acid as the best for germination. The association of 0.1 mg.L-1 of BAP to 0.2 mg.L-1 of ANA provided better formation of buds. As to the application of questionnaires, they revealed that the population understands the decreased amount of umbu plants and umbu fruit in the region, as well as shows concern for its conservation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action