6 resultados para gel drying

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

FERNANDES, Fabiano A. N. et al. Optimization of Osmotic Dehydration of Papaya of followed by air-drying. Food Research Internation, v. 39, p. 492-498, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Methotrexate (MTX) is a drug used in the chemotherapy of some kind of cancers, autoimmune diseases and non inflammatory resistant to corticosteroids uveits. However, the rapid plasmatic elimination limits its therapeutic success, which leads to administration of high doses to maintain the therapeutic levels in the target tissues, occurring potential side effects. The aim of this study was to obtain spray dried biodegradable poly-lactic acid co-glycolic acid (PLGA) microparticles containing MTX. Thus, suitable amounts of MTX and PLGA were dissolved in appropriate solvent system to obtain solutions at different ratios drug/polymer (10, 20, 30 and 50% m/m). The physicochemical characterizing included the quantitative analysis of the drug using a validate UV-VIS spectrophotometry method, scanning electron microscopy (SEM), infrared spectrophotometry (IR), thermal analyses and X-ray diffraction analysis. The in vitro release studies were carried out in a thermostatized phosphate buffer pH 7.4 (0.05 M KH2PO4) medium at 37°C ± 0.2 °C. The in vitro release date was subjected to different kinetics release models. The MTX-loaded PLGA microparticles showed a spherical shape with smooth surface and high level of entrapped drug. The encapsulation efficiency was greater then 80%. IR spectroscopy showed that there was no chemical bond between the compounds, suggesting just the possible occurrence of hydrogen bound interactions. The thermal analyses and X-ray diffraction analysis shown that MTX is homogeneously dispersed inside polymeric matrix, with a prevalent amorphous state or in a stable molecular dispersion. The in vitro release studies confirmed the sustained release for distinct MTX-loaded PLGA microparticles. The involved drug release mechanism was non Fickian diffusion, which was confirmed by Kornmeyer-Peppas kinetic model. The experimental results demonstrated that the MTX-loaded PLGA microparticles were successfully obtained by spray drying and its potential as prolonged drug release system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New drug delivery systems have been used to increase chemotherapy efficacy due the possible drug resistance of cancer cells. Poly (lactic acid) (PLA) microparticles are able to reduce toxicity and prolong methotrexate (MTX) release. In addition, the use of PLA/poloxamer polymer blends can improve drug release due to changes in the interaction of particles with biological surfaces. The aim of this study was developing spray dried biodegradable MTX-loaded microparticles and evaluate PLA interactions with different kinds of Pluronic® (PLUF127 and PLUF68) in order to modulate drug release. The variables included different drug:polymer (1:10, 1:4.5, 1:3) and polymer:copolymer ratios (25:75, 50:50, 75:25). The precision and accuracy of spray drying method was confirmed assessing drug loading into particles (75.0- 101.3%). The MTX/PLA microparticles showed spherical shape with an apparently smooth surface, which was dependent on the PLU ratio used into blends particles. XRD and thermal analysis demonstrated that the drug was homogeneously dispersed into polymer matrix, whereas the miscibility among components was dependent on the used polymer:copolymer ratio. No new drug- polymer bond was identified by FTIR analysis. The in vitro performance of MTX-loaded PLA microparticles demonstrated an extended-release profile fitted using Korsmeyer- Peppas kinetic model. The PLU accelerated drug release rate possible due PLU leached in the matrix. Nevertheless, drug release studies carried out in cell culture demonstrated the ability of PLU modulating drug release from blend microparticles. This effect was confirmed by cytotoxicity observed according to the amount of drug released as a function of time. Thus, studied PLU was able to improve the performance of spray dried MTX-loaded PLA microparticles, which can be successfully used as carries for modulated drug delivery with potential in vivo application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work the organosilanes aminopropyltriethoxysilane, 3-mercaptopropyltryethoxisilane and n[-3-(trimetoxisilyl)propyl]ethylenetriamine, as well as tetraethylortosilicate (TEOS), were employed to produce, by sol-gel method, organofuncionalized silicon samples. The prepared samples were characterized by elementar analys by thermogravimetry and infrared spectroscopy. Those samples were employed to adsorb Cd2+, Pb2+, Ni2+ and Zn2+ from aqueous solutions (10, 20, 40, 60 and 80 mg L-1). In typical experiments, 50 mg of the organometrix was suspended in 20 mL of metal cation solutions at four different contact times: 30, 60, 90 and 120 minutes. The total amount of adsorbed cations were measured by atomic absorption spectrometry. To all investigated matrices, the following adsorption capacity was observed: Ni2+ > Zn2+ > Cd2+ > Pb2+. Such sequence is closely related with the cation radius, as well as the cation hardness