4 resultados para gel consistency
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The demand for materials with high consistency obtained at relatively low temperatures has been leveraging the search for chemical processes substituents of the conventional ceramic method. This paper aims to obtain nanosized pigments encapsulated (core-shell) the basis of TiO2 doped with transition metals (Fe, Co, Ni, Al) through three (3) methods of synthesis: polymeric precursors (Pechini); hydrothermal microwave, and co-precipitation associated with the sol-gel chemistry. The study was motivated by the simplicity, speed and low power consumption characteristic of these methods. Systems costs are affordable because they allow achieving good control of microstructure, combined with high purity, controlled stoichiometric phases and allowing to obtain particles of nanometer size. The physical, chemical, morphological, structural and optical properties of the materials obtained were analyzed using different techniques for materials characterization. The powder pigments were tested in discoloration and degradation using a photoreactor through the solution of Remazol yellow dye gold (NNI), such as filtration, resulting in a separation of solution and the filter pigments available for further UV-Vis measurements . Different calcination temperatures taken after obtaining the post, the different methods were: 400 º C and 1000 º C. Using a fixed concentration of 10% (Fe, Al, Ni, Co) mass relative to the mass of titanium technologically and economically enabling the study. By transmission electron microscopy (TEM) technique was possible to analyze and confirm the structural formation nanosized particles of encapsulated pigment, TiO2 having the diameter of 20 nm to 100 nm, and thickness of coated layer of Fe, Ni and Co between 2 nm and 10 nm. The method of synthesis more efficient has been studied in the work co-precipitation associated with sol-gel chemistry, in which the best results were achieved without the need for the obtainment of powders the calcination process
Resumo:
Oxide type spinel AB2O4 presents structure adjusted for application in the automobile industry. The spinel of cobalt has many practical applications had its excellent physical and chemical properties such as catalyst in hydrocarbon oxidation reaction. The CeO2 has been used in many of these processes because it assigns to a material with excellent thermal resistance and mechanics, high capacity of oxygen stockage (OSC) among others properties. This work deals with the synthesis, characterization and catalytic application of spinel of cobalt and CeO2 with fluorita structure, obtained for method of Pechini and method of Gel-Combustion. The process of Pechini, the puff was obtained at 300 ºC for 2 h in air. In the process of Gel-Combustion the approximately at 350 ºC material was prepared and burnt for Pyrolysis, both had been calcined at 500 ºC, 700 ºC, 900 ºC and 1050 ºC for 2 h in air. The materials of the calcinations had been characterized by TG/DTA, electronic microscopy of sweepings (MEV), spectroscopy of absorption in the infra-red ray (FTIR) and diffraction of X-rays (DRX). The obtained material reaches the phase oxide at 450 oC for Pechini method and 500 °C for combustion method. The samples were submitted catalytic reaction of n-hexane on superficies of materials. The reactor function in molar ration of 0, 85 mol.h-1.g-1 and temperature of system was 450 °C. The sample obtained for Pechini and support in alumine of superficial area of 178,63 m2.g-1 calcined at 700 ºC, give results of catalytic conversions of 39 % and the sample obtained for method of gel-combustion and support in alumina of 150 mesh calcined at 500 ºC result 13 % of conversion. Both method were selective specie C1
Resumo:
In this work the organosilanes aminopropyltriethoxysilane, 3-mercaptopropyltryethoxisilane and n[-3-(trimetoxisilyl)propyl]ethylenetriamine, as well as tetraethylortosilicate (TEOS), were employed to produce, by sol-gel method, organofuncionalized silicon samples. The prepared samples were characterized by elementar analys by thermogravimetry and infrared spectroscopy. Those samples were employed to adsorb Cd2+, Pb2+, Ni2+ and Zn2+ from aqueous solutions (10, 20, 40, 60 and 80 mg L-1). In typical experiments, 50 mg of the organometrix was suspended in 20 mL of metal cation solutions at four different contact times: 30, 60, 90 and 120 minutes. The total amount of adsorbed cations were measured by atomic absorption spectrometry. To all investigated matrices, the following adsorption capacity was observed: Ni2+ > Zn2+ > Cd2+ > Pb2+. Such sequence is closely related with the cation radius, as well as the cation hardness
Resumo:
Actinic cheilitis (AC) is a potentially malignant disorder which affects the lip vermilion and results from chronic exposure to sunlight. Currently, it is not possible to predict which cases of AC may progress to squamous cell carcinoma, and therefore, some biomolecular markers have been researched. Cyclooxygenase 2 (COX-2) is an enzyme associated with inflammatory response which is overexpressed in oral cancer; however, little is known about the role of this protein in actinic cheilitis. About the treatment of this lesion, currently available therapeutic modalities to AC may cause cytotoxic effects and deleterious results to patients. Therefore, the aim of this study was to evaluate the immunoexpression of COX-2 in AC of different risks of malignant transformation and analyse, through clinical follow-up, the efficacy of diclofenac sodium 3% gel in the treatment of this condition. Epithelial immunoexpression of COX-2 was analysed semi-quantitatively in 90 cases of AC classified as low risk (n = 55) and high risk (n = 35) of malignant transformation, in which the scores were assigned: (0) 0 to 5% of positive cells - Negative; (1) 6 to 30% of positive cells - Low expression; (2) 31 to 100% of positive cells - High expression. The chi-square test of Pearson was conducted to verify possible associations between immunoexpression of COX-2 and histologic grade of actinic cheilitis. The weighted kappa coefficient denoted a good interobserver agreement (0.677). Nineteen patients diagnosed with AC were instructed to perform topical application of the gel three times a day for a period of 90 days. In each biweekly visit, a follow-up record was accomplished through digital photographs and after treatment was completed, two researchers analysed all the images to assess clinical aspects of the lip. Furthermore, tolerability to the drug and patient satisfaction after treatment were evaluated. COX-2 was overexpressed in 74.4% of AC cases. Both low and high-risk groups revealed predominance of score 3, followed by scores 2 and 1. There was no significant association (p = 0.315) between COX-2 expression and histological grading. Among the total number of participants of this clinical study, ten showed total remission of all clinical features of the lesion and three had partial improvement of these characteristics. One participant presented worsening of the clinical condition. In five cases, the treatment was discontinued due to development of mild adverse effects at the site of gel application. Regarding analysis of satisfaction and tolerability to the drug, most patients were fully satisfied with the therapy (n = 11) and reported that the drug was not irritating to the lips (n = 9). Our study demonstrates that high expression of COX-2 is common in AC; however, this protein was not associated with malignant transformation risk of the analysed cases. Topical application of diclofenac sodium 3% gel provided a convenient and well tolerated approach in most cases, and may be a promising alternative for the treatment of actinic cheilitis.