2 resultados para galaxies: statistics
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The power-law size distributions obtained experimentally for neuronal avalanches are an important evidence of criticality in the brain. This evidence is supported by the fact that a critical branching process exhibits the same exponent t~3=2. Models at criticality have been employed to mimic avalanche propagation and explain the statistics observed experimentally. However, a crucial aspect of neuronal recordings has been almost completely neglected in the models: undersampling. While in a typical multielectrode array hundreds of neurons are recorded, in the same area of neuronal tissue tens of thousands of neurons can be found. Here we investigate the consequences of undersampling in models with three different topologies (two-dimensional, small-world and random network) and three different dynamical regimes (subcritical, critical and supercritical). We found that undersampling modifies avalanche size distributions, extinguishing the power laws observed in critical systems. Distributions from subcritical systems are also modified, but the shape of the undersampled distributions is more similar to that of a fully sampled system. Undersampled supercritical systems can recover the general characteristics of the fully sampled version, provided that enough neurons are measured. Undersampling in two-dimensional and small-world networks leads to similar effects, while the random network is insensitive to sampling density due to the lack of a well-defined neighborhood. We conjecture that neuronal avalanches recorded from local field potentials avoid undersampling effects due to the nature of this signal, but the same does not hold for spike avalanches. We conclude that undersampled branching-process-like models in these topologies fail to reproduce the statistics of spike avalanches.
Resumo:
The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP