7 resultados para functional group diversity
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Water scarcity is a reality for the inhabitants of the Brazilian semiarid region. The problem, in quantitative terms , is caused due to local climatic conditions due mostly to a water deficit. Qualitatively, results of multiple uses and resulting contamination by human activities. Eutrophication is presented as a threat to the sustainable use of water resources, in order to favor the predominance of dense populations of cyanobacteria, which can be potentially harmful to human health. The aim of this study is to understand the population dynamics of phytoplankton and cyanobacteria to assess water quality of reservoirs Santa Cruz do Apodi and Pau dos Ferros belonging to bacia Apodi Mossoró-RN . Water samples were collected monthly between October 2011 and May 2012 in reservoirs Santa Cruz do Apodi and Pau dos Ferros, in this latter , in Jan/12 we performed a diel profile . The abiotic variables obtained in the field and in the laboratory were: water temperature , dissolved oxygen , pH , turbidity , transparency , total nitrogen and total phosphorus . Phytoplankton samples were collected with a plankton net and bottle of Van dorn . Were performed : identification , quantification , calculation of biovolume , classification into functional groups and index calculation phytoplankton assembly ( Q ) , cyanotoxins were quantified by ELISA . Statistical analyzes supported the evaluation of the dynamics between biotic and abiotic factors. A questionnaire was conducted to examine the conceptions of the population, education professionals and students. The reservoir of Pau dos Ferros, shallow , turbid and eutrophic showed dominance of the functional group SN throughout the sample period . The phytoplankton biomass ranged from 20 to 70 mm ³ . L - 1, the lowest values coincided with the increase of the mixing zone and transparency, which contributed to the occurrence of a change in species composition phytoplankton . The application of the index Q proved relevant, the reservoir of Pau dos Ferros , depending on the species present , was classified ecologically as bad for almost the entire sample period . The reservoir Santa Cruz do Apodi showed low biomass ( 0.04 and 4.31 mm ³ . L - 1 ) and greater diversity in the phytoplankton composition . According to the index assembly (Q ), it showed moderate condition during most of the period influenced by different functional groups of typical meso- eutrophic environment (K S0, H1, C, F , J , E, D and N) . Associations of diatoms and green algae D and X1 succeeded populations of cyanobacteria in periods marked by greater instability in the system , caused by wind or rain. In summary , the occurrence of drought has a direct influence on the hydrological conditions of the reservoirs , in general, these events, reducing the reservoir level is directly related to decreased water quality and increased density of phytoplankton occurring predominance of cyanobacteria , the index Q reflected well to changes in phytoplankton composition , being a good indicator for biomonitoring of reservoirs in this study and survey of previous conceptions showed the need to work on environmental awareness for the preservation of water resources by conducting workshops for Environmental Education
Resumo:
The artifi cial eutrophication is one of the biggest t h reat for the quality of aquatic ecosystems in the whole world. The expectations for the future climatic scenarios in arid and semi - arid regions are intense and frequent droughts enhancing the risk of eutrophicati on and cyanobacterial blooms. Restoration techniques of eutrophic lakes were proposed to reduce nutrient loading and improve the water quality. A successful technique used in temperate regions is the biomanipulation by benthivorous fish removal . Our hypoth esis is that the benthivorous fish removal reduces phytoplankton total biomass and change the composition of phytoplankton functional groups, improving water quality. The aim of the study was evaluate the impact of biomanipulation on phytoplankton function al groups and in the water quality. We applied the technique of biomanipulation in the artificial lake ESEC, in a semi - arid region of Brazil and analyzed the physical and chemical variables and the dynamic of phytoplankton functional groups monthly during November 2012 to August 2013. With the removal of benthivorous fish we observed a significant increase of the euphotic depth, phytoplankton richness and the recruitment of green algae (groups F and J ), indicators of good water quality. However, we did not observe significant differences on total phosphorous concentration and on phytoplankton biomass and diversity. The drought effect in the region during the study was evident , promoting a drastic reduction on water level which influenced the availability of resource and affected phytoplankton community before the biomanipulation. To evaluate the effect of severe drought on the dynamic of phytoplankton functional groups and test if the drought periods are favorable to dominance of cyanobacterial groups, we stu died two artificial neighbors lakes (ESEC and Pocinhos) in a semi - arid tropical region during May 2012 to February 2013. We observed a temporal differentiation of biotic and abiotic variables caused by drought. Both lakes presented reduction of 2 meters of water level and increase on conductivity, turbidity, nutrients concentration and a reduction on water transparency, during the severe drought. The deeper lake (Pocinhos) increased phytoplankton total biomass and presented cyanobacterial functional group d ominance (group S N ) and the shallower lake (ESEC) reduced phytoplankton total biomass and presented dominance of mixotrophic and flagellate functional groups (groups W 1 e W 2 ). Summarizing, the knowledge of the effects of benthivorous fish removal in semi - a rid tropical lakes still unknown and this study had limitations caused by the impact of drought. Thus, it is necessary a long term monitoring to investigate the real effects of biomanipulation on the functioning of the studied ecosystems. Otherwise, period s of drought could have opposite effects (increase or reduction) on total biomass and composition of phytoplankton functional groups. Drought not always leads to dominance of cyanobacterial groups.
Resumo:
High levels of local, regional, and global extinctions has progressively simplified communities in terms of both species and ecosystem functioning. Theoretical models demonstrated that the degree of functional redundancy determines the rates of functional group loss in response to species extinctions. Here, we improve the theoretical predictions by incorporating in the model interactions between species and between functional groups. In this study, we tested the effect of different scenarios of interspecific interactions and effects between functional groups on the resistance to loss of community functional groups. Virtual communities have been built with different distribution patterns of species in functional groups, both with high and low evenness. A matrix A was created to represent the net effect of interspecific interactions among all species, representing nesting patterns, modularity, sensitive species, and dominant species. Moreover, a second matrix B was created to represent the interactions between functional groups, also exhibiting different patterns. The extinction probability of each species was calculated based on community species richness and by the intensity of the interspecific interactions that act upon it and group to which it belongs. In the model, successive extinctions decrease the community species richness, the degree of functional redundancy and, consequently, the number of functional groups that remain in the system. For each scenario of functional redundancy, A, and B, we ran 1000 simulations to generate an average functional extinction curve. Different model assumptions were able to generate remarkable variation on functional extinction curves. More extreme variations occurred when the matrix A and B caused a higher heterogeneity in the species extinction probability. Scenarios with sensitive species, positive or negative, showed a greater variation than the scenarios with dominant species. Nested interactions showed greater variation than scenarios where the interactions were in modules. Communities with maximal functional evenness can only be destabilized by the interactions between species and functional groups. In contrast, communities with low functional evenness can have its resistance either increased or decreased by the interactions. The concentration of positive interactions in low redundancy groups or negative interactions in high redundancy groups was able to decrease the functional extinction rates. In contrast, the concentration of negative interactions in low redundancy groups or positive interactions in high redundancy groups was able to increase the functional extinction rates. This model shows results that are relevant for species priorization in ecosystem conservation and restoration
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
The natural gas (NG) is a clean energy source and found in the underground of porous rocks, associated or not to oil. Its basic composition includes methane, ethane, propane and other components, like carbon dioxide, nitrogen, hydrogen sulphide and water. H2S is one of the natural pollutants of the natural gas. It is considered critical concerning corrosion. Its presence depends on origin, as well as of the process used in the gas treatment. It can cause problems in the tubing materials and final applications of the NG. The Agência Nacional do Petróleo sets out that the maximum concentration of H2S in the natural gas, originally national or imported, commercialized in Brazil must contain 10 -15 mg/cm3. In the Processing Units of Natural Gas, there are used different methods in the removal of H2S, for instance, adsorption towers filled with activated coal, zeolites and sulfatreat (solid, dry, granular and based on iron oxide). In this work, ion exchange resins were used as adsorbing materials. The resins were characterized by thermo gravimetric analysis, infrared spectroscopy and sweeping electronic microscopy. The adsorption tests were performed in a system linked to a gas-powered chromatograph. The present H2S in the exit of this system was monitored by a photometrical detector of pulsing flame. The electronic microscopy analyzes showed that the topography and morphology of the resins favor the adsorption process. Some characteristics were found such as, macro behavior, particles of variable sizes, spherical geometries, without the visualization of any pores in the surface. The infrared specters presented the main frequencies of vibration associated to the functional group of the amines and polymeric matrixes. When the resins are compared with sulfatreat, under the same experimental conditions, they showed a similar performance in retention times and adsorption capacities, making them competitive ones for the desulphurization process of the natural gas
Resumo:
PURPOSE: To evaluate if the ileum resection changes the functioning liver cell mass, the hepatic metabolism and the biodistribution of radiopharmaceutical in rats. METHODS: Twelve Wistar rats weighing 285g±34g were randomly divided into the ileum resection group (n = 6) and sham group rats (n = 6). After 30 days, they were anesthetized and 0.1mL of 99m-Tc-phytate(0.66MBq) was injected via femoral vein. After 30 minutes, blood samples were collected for red blood cells radioactive labeling and serum ALT, AST and gammaGT. Liver samples were used for 99m-Tc-phytatepercentage of radioactivity/gram of tissue and histopathology. Student’s t test was used with significance 0.05. RESULTS: There was a higher uptake of 99m-Tc-phytate in the liver of sham rats, compared to the ileum resection group (p<0.05). GammaGT, ALT and AST were increased in ileum resection rats compared to sham (p<0.05). The he patocytes count was significantly lower in ileum resection group than in sham (p<0.05). Liver: body mass ratio was lower in experimental animals than in sham group (p<0.05). CONCLUSION: These data support that the ileum has important role in liver function and liver mass regulation, and they have potential clinical implications regarding the pathogenesis of liver injury following lower bowel resection.
Resumo:
The Brazilian Northeast is the most vulnerable region to climatic variability risks. For the Brazilian semi-arid is expected a reduction in the overall rates of precipitation and an increase in the number of dry days. These changes predicted by the IPCC (2007) will intensify the rainfall and droughts period that could promote the dominance of cyanobacteria, thus affecting the water quality of reservoirs, that are most used for water supply, in the semi-arid. The aim of this study was to evaluate the effects of increasing temperature combined with nutrient enrichment on the functional structure of the phytoplankton community of a mesotrophic reservoir in the semi-arid, in the worst case scenario of climate change predicted by the IPCC (2007). Two experiments were performed, one in a rainy season and another in the dry season. In the water sampled, nutrients (nitrate and orthophosphate) were added in different concentrations. The microcosms were submitted to two different temperatures, five-year average of air temperature in the reservoir (control) and 4°C above the control temperature (warming). The results of this study showed that warming and nutrient enrichment benefited mainly the functional groups of cyanobacteria. During the rainy season it was verified the increasing biomass of small functional groups of unicellular and opportunists algae such as F (colonial green algae with mucilage) and X1 (nanoplanktonic algae of eutrophic lake systems). It was also observed an increasing in total biomass, in the richness and diversity of the community. In the dry season experiment there was a greater contribution in the relative biomass of filamentous algae, with a replacement of the group S1 (non-filamentous cyanobacteria with heterocytes) for H1 (filamentous cyanobacteria with heterocytes) in nutrient- enriched treatments. Moreover, there was also loss in total biomass, species richness and diversity of the community. The effects of temperature and nutrients manipulation on phytoplankton community of reservoir Ministro João Alves provoked changes in species richness, the diversity of the community and its functional composition, being the dry period which showed the highest susceptibility to the increase in the contribution of potentially toxic cyanobacteria with heterocytes