3 resultados para free surface

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Digital Elevation Models (DEM) are numerical representations of a portion of the earth surface. Among several factors which affect the quality of a DEM, it should be emphasized the attention on the input data and the choice of the interpolating algorithm. On the other hand, several numerical models are used nowadays to characterize nearshore hydrodynamics and morphological changes in coastal areas, whose validation is based on field data collection. Independent on the complexity of the physical processes which are modeled, little attention has been given to the intrinsic bathymetric interpolation built within the numerical models of the specific application. Therefore, this study aims to investigate and to quantify the influence of the bathymetry, as obtained by a DEM, on the hydrodynamic circulation model at a coastal stretch, off the coast of the State of Rio Grande do Norte, Northeast Brazil. This coastal region is characterized by strong hydrodynamic and littoral processes, resulting in a very dynamic morphology with shallow coastal bathymetry. Important economic activities, such as oil exploitation and production, fisheries, salt ponds, shrimp farms and tourism, also bring impacts upon the local ecosystems and influence themselves the local hydrodynamics. This fact makes the region one of the most important for the development of the State, but also enhances the possibility of serious environmental accidents. As a hydrodynamic model, SisBaHiA® - Environmental Hydrodynamics System ( Sistema Básico de Hidrodinâmica Ambiental ) was chosen, for it has been successfully employed at several locations along the Brazilian coast. This model was developed at the Coastal and Oceanographical Engineering Group of the Ocean Engineering Program at the Federal University of Rio de Janeiro. Several interpolating methods were tested for the construction of the DEM, namely Natural Neighbor, Kriging, Triangulation with Linear Interpolation, Inverse Distance to a Power, Nearest Neighbor, and Minimum Curvature, all implemented within the software Surfer®. The bathymetry which was used as reference for the DEM was obtained from nautical charts provided by the Brazilian Hydrographic Service of the Brazilian Navy and from a field survey conducted in 2005. Changes in flow velocity and free surface elevation were evaluated under three aspects: a spatial vision along three profiles perpendicular to the coast and one profile longitudinal to the coast as shown; a temporal vision from three central nodes of the grid during 30 days; a hodograph analysis of components of speed in U and V, by different tidal cycles. Small, but negligible, variations in sea surface elevation were identified. However, the differences in flow and direction of velocities were significant, depending on the DEM

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of finite size on the magnetic properties of ferromagnetic particles systems is a recurrent subject. One of the aspects wide investigated is the superparamagnetic limit where the temperature destroys the magnetic order of ferromagnetic small particles. Above the block temperature the thermal value of the magnetic moment of the particle vanishes, due to thermal fluctuations. The value of the blocking temperature diminishes when the size of the particle is reduced, reflecting the reduction of the anisotropy energy barrier between the uniform states along the uniaxial axis. The increasing demand for high density magnetic media has recently attracted great research interest in periodic arrangements of nanometric ferromagnetics particles, approach in the superparamagnetic limit. An interesting conjecture is the possibility of stabilization of the magnetic order of small ferromagnetic particles (F) by interface coupling with antiferromagnetic (AF) substrate. These F/AF systems may also help to elucidate some details of the effect of exchange bias, because the effect of interface roughness and the paper of domain walls, either in the substrate or the particle, are significantly reduced. We investigate the magnetic phases of small ferromagnetic particles on a antiferromagnetic substrate. We use a self-consistent local field method, incorporating the interface field and the dipole interaction between the spins of the ferromagnetic particle. Our results indicate that increasing the area of the interface favors the formation of the uniform state. Howere above a critical height value appears a state non-uniform is formed where the spins of in the particle s free surface are rotated with respect to the interface spins direction. We discuss the impact of the competition between the dipolar and interface field on the magnetic charge, that controls the field of flux leakage of the particle, and on the format of the hysteresis curves. Our results indicate that the liquid magnetic charge is not a monotonically increasing function of the height of the particle. The exchange bias may display anomalous features, induced for the dipolar field of the spins near the F/AF interface

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of confinement on the magnetic structure of vortices of dipolar coupled ferromagnetic nanoelements is an issue of current interest, not only for academic reasons, but also for the potential impact in a number of promising applications. Most applications, such as nano-oscillators for wireless data transmission, benefit from the possibility of tailoring the vortex core magnetic pattern. We report a theoretical study of vortex nucleation in pairs of coaxial iron and Permalloy cylinders, with diameters ranging from 21nm to 150nm, and 12nm and 21nm thicknesses, separated by a non-magnetic layer. 12nm thick iron and Permalloy isolated (single) cylinders do not hold a vortex, and 21nm isolated cylinders hold a vortex. Our results indicate that one may tailor the magnetic structure of the vortices, and the relative chirality, by selecting the thickness of the non-magnetic spacer and the values of the cylinders diameters and thicknesses. Also, the dipolar interaction may induce vortex formation in pairs of 12nm thick nanocylinders and inhibit the formation of vortices in pairs of 21nm thick nanocylinders. These new phases are formed according to the value of the distance between the cylinderes. Furthermore, we show that the preparation route may control relative chirality and polarity of the vortex pair. For instance: by saturating a pair of Fe 81nm diameter, 21nm thickness cylinders, along the crystalline anisotropy direction, a pair of 36nm core diameter vortices, with same chirality and polarity is prepared. By saturating along the perpendicular direction, one prepares a 30nm diameter core vortex pair, with opposite chirality and opposite polarity. We also present a theoretical discussion of the impact of vortices on the thermal hysteresis of a pair of interface biased elliptical iron nanoelements, separated by an ultrathin nonmagnetic insulating layer. We have found that iron nanoelements exchange coupled to a noncompensated NiO substrate, display thermal hysteresis at room temperature, well below the iron Curie temperature. The thermal hysteresis consists in different sequences of magnetic states in the heating and cooling branches of a thermal loop, and originates in the thermal reduction of the interface field, and on the rearrangements of the magnetic structure at high temperatures, 5 produce by the strong dipolar coupling. The width of the thermal hysteresis varies from 500 K to 100 K for lateral dimensions of 125 nm x 65 nm and 145 nm x 65 nm. We focus on the thermal effects on two particular states: the antiparallel state, which has, at low temperatures, the interface biased nanoelement with the magnetization aligned with the interface field and the second nanoelement aligned opposite to the interface field; and in the parallel state, which has both nanoelements with the magnetization aligned with the interface field at low temperatures. We show that the dipolar interaction leads to enhanced thermal stability of the antiparallel state, and reduces the thermal stability of the parallel state. These states are the key phases in the application of pairs of ferromagnetic nanoelements, separated by a thin insulating layer, for tunneling magnetic memory cells. We have found that for a pair of 125nm x 65nm nanoelements, separated by 1.1nm, and low temperature interface field strength of 5.88kOe, the low temperature state (T = 100K) consists of a pair of nearly parallel buckle-states. This low temperature phase is kept with minor changes up to T= 249 K when the magnetization is reduced to 50% of the low temperature value due to nucleation of a vortex centered around the middle of the free surface nanoelement. By further increasing the temperature, there is another small change in the magnetization due to vortex motion. Apart from minor changes in the vortex position, the high temperature vortex state remains stable, in the cooling branch, down to low temperatures. We note that wide loop thermal hysteresis may pose limits on the design of tunneling magnetic memory cells