2 resultados para fractal image modeling
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Although it has been suggested that retinal vasculature is a diffusion-limited aggregation (DLA) fractal, no study has been dedicated to standardizing its fractal analysis . The aims of this project was to standardize a method to estimate the fractal dimensions of retinal vasculature and to characterize their normal values; to determine if this estimation is dependent on skeletization and on segmentation and calculation methods; to assess the suitability of the DLA model and to determine the usefulness of log-log graphs in characterizing vasculature fractality . To achieve these aims, the information, mass-radius and box counting dimensions of 20 eyes vasculatures were compared when the vessels were manually or computationally segmented; the fractal dimensions of the vasculatures of 60 eyes of healthy volunteers were compared with those of 40 DLA models and the log-log graphs obtained were compared with those of known fractals and those of non-fractals. The main results were: the fractal dimensions of vascular trees were dependent on segmentation methods and dimension calculation methods, but there was no difference between manual segmentation and scale-space, multithreshold and wavelet computational methods; the means of the information and box dimensions for arteriolar trees were 1.29. against 1.34 and 1.35 for the venular trees; the dimension for the DLA models were higher than that for vessels; the log-log graphs were straight, but with varying local slopes, both for vascular trees and for fractals and non-fractals. This results leads to the following conclusions: the estimation of the fractal dimensions for retinal vasculature is dependent on its skeletization and on the segmentation and calculation methods; log-log graphs are not suitable as a fractality test; the means of the information and box counting dimensions for the normal eyes were 1.47 and 1.43, respectively, and the DLA model with optic disc seeding is not sufficient for retinal vascularization modeling
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison