9 resultados para fissures
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing
Resumo:
Ceramics with porous cellular structure, called ceramic foams, have a potential use in several applications, such as: thermal insulation, catalyst supports, filters, and others. Among these techniques to obtain porous ceramics the replication method is an important process. This method consists of impregnation of a sponge (usually polymer) with ceramic slurry, followed by a heat treatment, which will happen the decomposition of organic material and sintering the ceramic material, resulting in a ceramic structure which is a replica of impregnated sponge. Knowledge of the mechanical properties of these ceramics is important for these materials can be used commercially. Gibson and Ashby developed a mathematical model to describe the mechanical behavior of cellular solids. This model wasn´t for describing the ceramics behavior produced by the replica method, because it doesn´t consider the defects from this type of processing. In this study were researched mechanical behavior of porous alumina ceramics obtained by the replica method and proposed modifications to the model of Gibson and Ashby to accommodate this material. The polymer sponge used in processing was characterized by thermogravimetric analysis and scanning electron microscopy. The materials obtained after sintering were characterized by mechanical strength tests on 4-point bending and compression, density and porosity and by scanning electron microscopy. From these results it was evaluated the mechanical strength behavior compared to Gibson and Ashby model for solid cellular structure and was proposed a correction of this model through a factor related to struts integrity degree, which consider fissures present in the structure of these materials besides defects geometry within the struts
Resumo:
The waste in the industries of escargot processing is very big. This is composed basically of escargot meat out of the commercialization patterns and the visceras. In this context, there is a need to take advantage to the use of these sub-products. A possibility should be drying them and transforming them in a certain form to be reused. Than, the present work has the objective of studying the reutilization of the sub-products of the escargot industrialization for by means of drying process. The samples were transformed in pastes, through a domestic processor for approximately 1 minute and compacted in trays of aluminum without perforations with three different heights (5 mm, 10 mm and 15 mm). The drying was accomplished in a tray dryer with air circulation and transverse flow at a speed of 0,2 m/s and three temperature levels (70°C, 80°C and 90ºC). A drying kinetics study was accomplished for the obtained curves and for the heat and mass transfer coefficients using experimental procedures based in an experimental planning of 22 factorial type. Microbiological and physiochemical analysis were also accomplished for the in nature and the dehydrated sub-products. In the drying process, it was observed the great importance of the external resistances to the mass transfer and heat in the period of constant tax influenced by the temperature. The evaporation taxes indicated a mixed control of the mass transfer for the case of the thickest layers. As already expected, the drying constant behavior was influenced by the temperature and thickness of the medium, increasing and decreasing. The statistical analysis of the results, in agreement with the factorial planning 22, showed that the fissures, the shrinking of the transfer area and the formation of a crust on the surface might have contributed to the differences between the practical results and the linear model proposed. The temperature and the thickness influenced significantly in the answers of the studied variables: evaporation tax and drying constant. They were obtained significant statistical models and predictive ones for evaporation tax for the meat as well as for the visceras
Resumo:
The fissures aquifer northeast semi-arid Brazilian, present high text frequently of leave, with of low a hídric availability. The research has as objective main to analyze the components that inside influence in the salinity of the waterbearing fissures of an evaluation physicist-chemistry of the water, leading in consideration the physical interventions of the environment. One used techniques of interpretation of image of Landsat satellite -1999 and delimitation of the micro basin through the topographical map SUDENE. One identified waters of the NaCl type with Ca++ and Mg++ in secondary concentrations. The analyzed wells (15), had presented an average salinity of 5.147 mg/L of STD and a well only supplies drinking waters with 319 mg/L of STD. The recharge of the aquifer one if carries through for infiltration in the open fracture of ortognaisse it migmatization. The type and directions of the fracture do not control the STD. Relations between salinity and out let do not exist. The quality of the well of low salinity is identical the superficial waters (aquifer dam and alluvial). The studies of the meteoric erosion processes had evidenced that in the transformations of the rock in ground, the Ca++ and Na+ are taken for superficial waters. The treatment of the data chemical showed that the grade of Na+, Ca++, Mg++ and Cl-are controlled for the evaporation process, from only water that would have the qualities of superficial waters or the well of low salinity. Already the HCO3-grade is controlled for the precipitation of the dolomite. The STD of this aquifer one would be consequence of the high tax of evaporation of dams constructed in regions of plain topography. You leave them precipitated in deep argillaceous ones dry dams are led for the aquifer in first rains. The research suggests some recommendations for the use and exploitation of the water salinity in piscicultura, carcinicultura, culture of the grass-salt (Atriplex sp), among others
Resumo:
The synthesis of MFI-type zeolite membranes was carried by the process in situ or hydrothermal crystallization. We studied the homogenization time of the room temperature and gel filtration just before the crystallization step performed out in an oven, thus obtaining a more uniform zeolite film. The powder synthesized zeolite (structure type MFI, Silicalite) was characterized by several complementary techniques such as Xray diffraction (XRD), scanning electron microscopy (SEM), thermal analysis, temperature programmed desorption (TPD), Fourier Transform infrared spectroscopy (FTIR) and textural analysis by nitrogen adsorption (specific surface area). For the purpose of evaluating the quality of the layer supported on the ceramic support, N2 permeation tests were carried starting from room temperature to 600 °C, where values were observed values more appropriate permeation from 200 °C. With the data obtained, it was made into a graph of temperature versus permeation function, the curve of surface diffusion was found. For scanning electron microscopy, we observed the formation of homogeneous crystals and the zeolite film showed no fissures or cracks, indicating that the process of synthesis and subsequent treatments not damaged the zeolite layer on the support. Carried permeation studies were found values ranging from 3.64x10-6 to 3.78x10-6, 4.71x10-6 to 5.02x10-6, to pressures 20 and 25 psi, respectively. And the mixture xylenes/N2 values were between 5.39x10-6 to 5.67x10-6 and 8.13x10-6 to 8.36x10-6, also for pressures of 20 and 25 psi. The values found for the separation factor were 15.22 at 400 °C in the first experiment and 1.64 for the second experiment at a temperature of 150 °C. It is concluded that the Silicalite membrane was successfully synthesized and that it is effective in the separation of binary mixtures of xylenes
Resumo:
Among the non-invasive techniques employed in the prevention of caries highlights the sealing pits and fissures which is a conservative maneuver, in order to obliterate them to protect them from attack acid bacteria. Influenced by the studies of pre-heating composite resin, which has experienced great improvement in some of their physical properties, this study aimed to evaluate in vitro the superficial and internal marginal adaptation of different materials and sealants in pre-heating or not. A total of 40 extracted human third molars (n=10) that had their occlusal surfaces prepared to receive sealant. We tested two types of sealing materials: resin sealant (Fluoroshield) and low-viscosity resin (Permaflo), where 50% of previously received heated material and the other half received sealant material at room temperature. All samples were subjected to thermal cycling and pH, simulating a cariogenic oral environment, and later were analyzed appliance OCT (optical coherence tomography). The images obtained alterations were recorded and analyzed statistically. Change was considered as the emergence of bubbles, gaps and cracks in the sealant. Comparisons of the same material, assessing the fact that it is not sealed or preheated material, as well as comparisons between different materials subjected to the same temperature were carried out. The nonparametric Tukey test was used (p < 0,05). The results showed that there was statistically significant difference between both the materials analyzed, as between the situations in which the sealant material was submitted (preheated or not). On the issue of marginal adaptation and internal surface, seen through Optical coherence tomography, may suggest that there is a difference between the use of one type or another of the sealing material analyzed, with superiority attributed to resin Permaflo compared to sealant Fluroshield, telling is the same for the different techniques used
Resumo:
Protein and caloric malnutrition has been considered one of the most concerned endemic diseases in Brazil and in the world. It has been known that depletion or reduction of proteins as far as meals are concerned can steer irreversible damages upon several organic systems. This study had as aim evaluate the effects the low-protein diet had over the formation and composition of the teeth components. 18 females and 6 males were used for the experiment. 12 from the 18 females had undertaken the low-protein diet (DH) for 03 weeks and the other 6, which remained, and those males had undertaken a controlled diet (DC) for the same period. All animals had the diets during their mating, pregnancy and lactation cycle. As soon as the offsprings had been born, 10 young males and females of each group faced a disease hood analysis to check the teeth germs of their lower fore teeth. The rest of the group had their lactation cycle normally 60 days. Then they were put to death and had their lower fore teeth removed both to be analyzed through a scanning electronic microscopy (SEM) of the structure alterations and to have their calcium checked by an atomic absorption of the phosphorus vanadate-molibdate method and by other minerals EDX method. The animals livers were removed to have their hepatic proteins analyzed as well. The histopatologic study showed that at first day of birth, all animals had their lower fore teeth come out. It was verified that 90% of the animals teeth were in an apposition and calcification period and it was possible to observe the dentin formation from 60% of the 90% already mentioned. Through the SEM method it could be realized that 90% of the animals of the DH group had their lower fore teeth easily broken and no definite shape. In this same group itself, it was also observed long micro fissures 369,66 nm ± 3,45 while the DC group had fissures of 174 nm ± 5,72. Now regarding the calcium and phosphorus concentration, it could be noticed that there was a great reduction of these components and other minerals in the DH group. Almost all minerals, except for the Cl and K, presented higher levels in the DC group enamel.The reduction of the protein input greatly influenced the offsprings´ weight and height. However the hepatic proteins had no important difference between the groups what can make one believe that those animals suffered from protein malnutrition of marasmic kind
Resumo:
Cementing operation is one of the most important stages in the oil well drilling processes and has main function to form hydraulic seal between the various permeable zones traversed by the well. However, several problems may occur with the cement sheath, either during primary cementing or during the well production period. Cements low resistance can cause fissures in the cement sheath and compromise the mechanical integrity of the annular, resulting in contamination of groundwater and producing zones. Several researches show that biomass ash, in particular, those generated by the sugarcane industry have pozzolanic activity and can be added in the composition of the cementing slurries in diverse applications, providing improvements in mechanical properties, revenue and cement durability. Due to the importance of a low cost additive that increases the mechanical properties in a well cementing operations, this study aimed to potentiate the use of sugarcane bagasse ash as pozzolanic material, evaluate the mechanisms of action of this one on cement pastes properties and apply this material in systems slurries aimed to cementing a well with 800 m depth and geothermal gradient of 1.7 °F/100 ft, as much primary cementing operations as squeeze. To do this, the ash beneficiation methods were realized through the processes of grinding, sifting and reburning (calcination) and then characterization by X-ray fluorescence, XRD, TG / DTG, specific surface area, particle size distribution by laser diffraction and mass specific. Moreover, the ash pozzolanic activity added to the cement at concentrations of 0%, 20% and 40% BWOC was evaluated by pozzolanic activity index with lime and with Portland cement. The evaluation of the pozzolanic activity by XRD, TG / DTG and compressive strength confirmed the ash reactivity and indicated that the addition of 20% in the composition of cement slurries produces improvement 34% in the mechanical properties of the slurry cured. Cement slurries properties evaluated by rheological measurements, fluid loss, free fluid, slurry sedimentation, thickening time and sonic strength (UCA) were satisfactory and showed the viability of using the sugarcane ash in cement slurries composition for well cementing