13 resultados para extractor

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increasing demand for high performance wireless communication systems has shown the inefficiency of the current model of fixed allocation of the radio spectrum. In this context, cognitive radio appears as a more efficient alternative, by providing opportunistic spectrum access, with the maximum bandwidth possible. To ensure these requirements, it is necessary that the transmitter identify opportunities for transmission and the receiver recognizes the parameters defined for the communication signal. The techniques that use cyclostationary analysis can be applied to problems in either spectrum sensing and modulation classification, even in low signal-to-noise ratio (SNR) environments. However, despite the robustness, one of the main disadvantages of cyclostationarity is the high computational cost for calculating its functions. This work proposes efficient architectures for obtaining cyclostationary features to be employed in either spectrum sensing and automatic modulation classification (AMC). In the context of spectrum sensing, a parallelized algorithm for extracting cyclostationary features of communication signals is presented. The performance of this features extractor parallelization is evaluated by speedup and parallel eficiency metrics. The architecture for spectrum sensing is analyzed for several configuration of false alarm probability, SNR levels and observation time for BPSK and QPSK modulations. In the context of AMC, the reduced alpha-profile is proposed as as a cyclostationary signature calculated for a reduced cyclic frequencies set. This signature is validated by a modulation classification architecture based on pattern matching. The architecture for AMC is investigated for correct classification rates of AM, BPSK, QPSK, MSK and FSK modulations, considering several scenarios of observation length and SNR levels. The numerical results of performance obtained in this work show the eficiency of the proposed architectures

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The petroleum industry, in consequence of an intense activity of exploration and production, is responsible by great part of the generation of residues, which are considered toxic and pollutants to the environment. Among these, the oil sludge is found produced during the production, transportation and refine phases. This work had the purpose to develop a process to recovery the oil present in oil sludge, in order to use the recovered oil as fuel or return it to the refining plant. From the preliminary tests, were identified the most important independent variables, like: temperature, contact time, solvents and acid volumes. Initially, a series of parameters to characterize the oil sludge was determined to characterize its. A special extractor was projected to work with oily waste. Two experimental designs were applied: fractional factorial and Doehlert. The tests were carried out in batch process to the conditions of the experimental designs applied. The efficiency obtained in the oil extraction process was 70%, in average. Oil sludge is composed of 36,2% of oil, 16,8% of ash, 40% of water and 7% of volatile constituents. However, the statistical analysis showed that the quadratic model was not well fitted to the process with a relative low determination coefficient (60,6%). This occurred due to the complexity of the oil sludge. To obtain a model able to represent the experiments, the mathematical model was used, the so called artificial neural networks (RNA), which was generated, initially, with 2, 4, 5, 6, 7 and 8 neurons in the hidden layer, 64 experimental results and 10000 presentations (interactions). Lesser dispersions were verified between the experimental and calculated values using 4 neurons, regarding the proportion of experimental points and estimated parameters. The analysis of the average deviations of the test divided by the respective training showed up that 2150 presentations resulted in the best value parameters. For the new model, the determination coefficient was 87,5%, which is quite satisfactory for the studied system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The extraction with pressurized fluids has become an attractive process for the extraction of essential oils, mainly due the specific characteristics of the fluids near the critical region. This work presents results of the extraction process of the essential oil of Cymbopogon winterianus J. with CO2 under high pressures. The effect of the following variables was evaluated: solvent flow rate (from 0.37 to 1.5 g CO2/min), pressure (66.7 and 75 bar) and temperature (8, 10, 15, 20 and 25 ºC) on the extraction kinetics and the total yield of the process, as well as in the solubility and composition of the C. winterianus essential oil. The experimental apparatus consisted of an extractor of fixed bed and the dynamic method was adopted for the calculation of the oil solubility. Extractions were also accomplished by conventional techniques (steam and organic solvent extraction). The determination and identification of extract composition were done by gas chromatography coupled with a mass spectrometer (GC-MS). The extract composition varied in function of the studied operational conditions and also related to the used extraction method. The main components obtained in the CO2 extraction were elemol, geraniol, citronellol and citronellal. For the steam extraction were the citronellal, citronellol and geraniol and for the organic solvent extraction were the azulene and the hexadecane. The most yield values (2.76%) and oil solubility (2.49x10-2 g oil/ g CO2) were obtained through the CO2 extraction in the operational conditions of T = 10°C, P = 66.7 bar and solvent flow rate 0.85 g CO2/min

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nowadays, the growing environmental worry leads research the focus the application of alternative materials from renewable resources on the industrial process. The most common vegetable oil extractant using around the world is the hexane, a petroleum derived, toxic and flammable. Based on this fact, the goal of this work was to test vegetable oil extractions from sunflower seeds cultivated on the Rio Grande do Norte State using two extraction process, the mechanical expelling and solvent extraction, this one using hexane and ethanol as a alternative solvent. The solvent extractions were carried out in the Soxhlet extractor in three different extraction times (4, 6, and 8 hours). The effect of solvent and extraction time was evaluated. The mechanical extraction was carried out in a expeller and the sunflower oil obtained was characterized by its physical-chemical properties and compared with sunflower refinery oil. Furthermore this work also explored the pyrolysis reaction carried out by thermogravimetry measurement as alternative route to obtain biofuel. For this purpose the oil samples were heated to ambient temperature until 900°C in heating rate of 5, 10, 20ºC min-1 with the objective evaluated the kinetics parameters such activation energy and isoconversion. The TG/DTG curves show the thermal profile decomposition of triglycerides. The curves also showed that antioxidant presents on the refinery oil not influence on the thermal stability of sunflower oil. The total yield of the extraction s process with hexane and ethanol solvent were compared, and the results indicated that the extraction with ethanol were more efficient. The pyrolysis reaction results indicated that the use of unpurified oil required less energy to obtain the bio-oil

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increase of asphalt milling services was also a significant increase in recycling services pavements. The techniques used today are basically physical processes in which the milled material is incorporated into new asphalt mixtures or executed on site, with the addition of virgin asphalt and rejuvenating agent. In this paper seeks to analyze the efficiency of extraction of CAP (Petroleum Asphalt Cement) mixtures from asphalt milling, using commercial solvents and microemulsions. The solvents were evaluated for their ability to solubilize asphalt using an extractor reflux-type apparatus. Pseudoternary diagrams were developed for the preparation of microemulsion O/W surfactant using a low-cost coconut oil saponified (OCS). Microemulsions were used to extract the CAP of asphalt through physicochemical process cold. Analysis was performed concentration of CAP in solution by spectroscopy. The data provided in the analysis of concentration by the absorbance of the solution as the basis for calculating the percentage of extraction and the mass flow of the CAP in the solution. The results showed that microemulsions prepared with low concentration of kerosene and butanol/OCS binary has high extraction power of CAP and its efficiency was higher than pure kerosene, reaching 95% rate of extraction

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tanning industries are those which transform animal hide or skin into leather. Due to the complexity of the transformation process, greater quantities of chemicals are being used which results in the generation of effluents with residual solids. The chromium in the residual waters generated by tanning tend to be a serious problem to the environment, therefore the recovery of this metal could result in the reduction of manufacturing costs. This metal is usually found in a trivalent form which can be converted into a hexavalent compound under acidic conditions and in the presence of organic matter. The present study was carried out with the objective to recover chromium through an extraction/re-extraction process using micro emulsions. Micro emulsions are transparent and thermodynamically stable system composed of two immiscible liquids, one forming the continuous phase and the other dispersed into micro bubbles, established by an interfacial membrane formed by surface active and co-surface active molecules. The process of recovering the chromium was carried out in two stages. The first, an extraction process, where the chromium was extracted in the micro emulsion phase and the aqueous phase in excess was separated. In the second stage, a concentrated acid was added to the micro emulsion phase rich in chromium in order to obtain a Winsor II system, where the water that formed in the micro emulsion phase separates into a new micro emulsion phase with a higher concentration of chromium, due to the lowering of the hydrophiles as well as the ionisation of the system. During the experimental procedure, a study was initiated with a synthetic solution of chromium sulphate passing onto the effluent. A Morris extractor was used in the extraction process. Tests were carried out according to the plan and the results were analysed by statistical methods in order to optimise the main parameters that influence the process: the total rate of flow (Q), stirring speed (w) and solvent rate (r). The results, after optimization, demonstrated that the best percentuals in relation to the chromium extraction (99 %) were obtained in the following operational conditions: Q= 2,0 l/h, w= 425 rpm and r= 0,375. The re-extraction was carried out at room temperature (28 °C), 40 °C and 50°C using hydrochloric acid (8 and 10 M) and sulphuric acid (8 M) as re-extracting agents. The results obtained demonstrate that the process was efficient enough in relation to the chromium extraction, reaching to re-extraction percentage higher than 95 %.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies show the great influence of free radicals and other oxidants as responsible for aging and degenerative diseases. On the other hand, the natural phenolic compounds has shown great as antioxidants to inhibit lipid peroxidation and lipoxygenase in vitro. Among these, is highlighted trans-resveratrol ( 3,5,4 `- trihydroxystilbene ) phenolic compound , characterized as a polyphenol stilbene class. The vegetables popularly known as "Azedinha" (Rumex Acetosa) has trans-resveratrol in its composition and from this, the present work aimed to study on the supercritical extraction and conventional extraction (Soxhlet and sequential) in roots of Rumex Acetosa, evaluating the efficiency of extractive processes, antioxidant activity, total phenolic content and quantification of trans-resveratrol contained in the extracts. Extractions using supercritical CO2 as solvent, addition of co-solvent (ethanol) and were conducted by the dynamic method in a fixed bed extractor. The trial met a 23 factorial design with three replications at the central point, with the variable reply process yield and concentration of trans-resveratrol and pressure as independent variables, temperature and concentration of co-solvent (% v/v). Yields ( mass of dry extract / mass of raw material used ) obtained from the supercritical extraction ranged from 0,8 to 7,63 % , and the best result was obtained at 250 bar and 90 °C using the co-solvent 15% ethanol (% v/v). The value was calculated for YCER a flow rate of 1,0 ± 0,17 g/min resulting in 0,0469 CO2 ( g solute / g solvent ). The results of the mass yield varied between conventional extractions 0,78 % ( hexane) and 9,97 % (ethanol). The statistical model generated from the data of the concentration of trans-resveratrol performed as meaningful and predictive for a 95% confidence. GC analysis on HPLC (High Performance Liquid Chromatography), transresveratrol was quantified in all extracts and concentration values ranged between 0,0033 and 0,42 ( mg / g extract) for supercritical extracts and between 0,449 and 17,046 (mg / g extract) to conventional extractions and therefore, the Soxhlet extraction with ethanol for more selective trans-resveratrol than the supercritical fluid. Evaluation of antioxidant (radical method to sequester 2,2- diphenyl-1- picryl - hydrazyl - DPPH) the supercritical extracts resulted in EC50 values (concentration effective to neutralize 50% of free radicals) of between 7,89 and 18,43 mg/mL , while resulting in a Soxhlet extraction with EC50 values in the range of 6,05 and 7,39 mg/mL. As for quantification of the phenolic compounds (Method Spectrophotometer Folin-Ciocalteau) the supercritical extracts resulted in values between 85,3 and 194,79 mg GAE / g extract, whereas values derived from the Soxhlet extract resulted in values between 178,5 and 237,8 mg GAE / g extract. The high antioxidant activity can not be attributed solely to the presence of phenolic compounds, but the presence of other antioxidants in the existing Rumex acetosa

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of the present study was to extract vegetable oil from brown linseed (Linum usitatissimum L.), determine fatty acid levels, the antioxidant capacity of the extracted oil and perform a rapid economic assessment of the SFE process in the manufacture of oil. The experiments were conducted in a test bench extractor capable of operating with carbon dioxide and co-solvents, obeying 23 factorial planning with central point in triplicate, and having process yield as response variable and pressure, temperature and percentage of cosolvent as independent variables. The yield (mass of extracted oil/mass of raw material used) ranged from 2.2% to 28.8%, with the best results obtained at 250 bar and 50ºC, using 5% (v/v) ethanol co-solvent. The influence of the variables on extraction kinetics and on the composition of the linseed oil obtained was investigated. The extraction kinetic curves obtained were based on different mathematical models available in the literature. The Martínez et al. (2003) model and the Simple Single Plate (SSP) model discussed by Gaspar et al. (2003) represented the experimental data with the lowest mean square errors (MSE). A manufacturing cost of US$17.85/kgoil was estimated for the production of linseed oil using TECANALYSIS software and the Rosa and Meireles method (2005). To establish comparisons with SFE, conventional extraction tests were conducted with a Soxhlet device using petroleum ether. These tests obtained mean yields of 35.2% for an extraction time of 5h. All the oil samples were sterilized and characterized in terms of their composition in fatty acids (FA) using gas chromatography. The main fatty acids detected were: palmitic (C16:0), stearic (C18:0), oleic (C18:1), linoleic (C18:2n-6) and α-linolenic (C18:3n-3). The FA contents obtained with Soxhlet dif ered from those obtained with SFE, with higher percentages of saturated and monounsaturated FA with the Soxhlet technique using petroleum ether. With respect to α-linolenic content (main component of linseed oil) in the samples, SFE performed better than Soxhlet extraction, obtaining percentages between 51.18% and 52.71%, whereas with Soxhlet extraction it was 47.84%. The antioxidant activity of the oil was assessed in the β-carotene/linoleic acid system. The percentages of inhibition of the oxidative process reached 22.11% for the SFE oil, but only 6.09% for commercial oil (cold pressing), suggesting that the SFE technique better preserves the phenolic compounds present in the seed, which are likely responsible for the antioxidant nature of the oil. In vitro tests with the sample displaying the best antioxidant response were conducted in rat liver homogenate to investigate the inhibition of spontaneous lipid peroxidation or autooxidation of biological tissue. Linseed oil proved to be more efficient than fish oil (used as standard) in decreasing lipid peroxidation in the liver tissue of Wistar rats, yielding similar results to those obtained with the use of BHT (synthetic antioxidant). Inhibitory capacity may be explained by the presence of phenolic compounds with antioxidant activity in the linseed oil. The results obtained indicate the need for more detailed studies, given the importance of linseed oil as one of the greatest sources of ω3 among vegetable oils

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gallium is an important material used in the electronic industry whose demand in the world market is increasing in view of its potential applications. A selective technique is required to allow for the production of the metal, separated from aluminium. Due to the fact that microemulsions constitute an attractive alternative to metal extraction procedures, microemulsified systems have been employed as gallium-selective extraction agents. Two surfactants have been synthesized: sodium 12-N,N-diethylamino-9,10-dihydroxyestearate (AMINE) and saponified coconut oil (SCO), both produced from raw materials readily available in Northeastern Brazil. Also, the commercial extraction agent KELEX-100, conventionally used with the same purpose, has been used in this work for comparison. The optimization of the extraction process with microemulsions was carried out by investigating the influence of some parameters, namely the type of cosurfactant, the cosurfactant/surfactant (C/S) ratio, the pH and concentration of metals in the aqueous phase. Pseudoternary diagrams, which are representative of the microemulsified systems under study, have been constructed in order to establish the boundaries of the regions where the several Winsor systems are formed. An experimental planning methodology (Scheffé Net) has been used to optimize the extraction. The extraction percentage values were as high as 100% for gallium and 99.99% for aluminium for the system with KELEX-100; 96.6% for gallium and 98.8% for aluminium for the system containing AMINE; and 88% for gallium and 85% for aluminium for the system with SCO. The microemulsified system chosen for presenting the best results in gallium extraction was composed by SCO/isoamyl alcohol/kerosene/Bayer licquor with a C/S ratio of 28 and pH of the original aqueous phase of 6.0. The selectivity that has not been observed in the extraction stage was accomplished in the reextraction process using HCl. For the KELEX-100 system, gallium was reextracted at 100% with 6M HCl and aluminium was reextracted at 100% with 0.8M HCl. For the AMINE system, the reextraction percentages were also 100% for both metals, using 6M HCl for gallium and 0.5M HCl for aluminium. On the other hand, the reextraction percentages for the system with SCO were as high as 84% for gallium and 92% for aluminium, with HCl in the same concentrations as those used in the AMINE system. Finally, an optimized system was applied in the gallium extraction process employing a reciprocating perforated-plates extractor. As a result, the metal content was extracted at a recovery rate of 95% for gallium and 97% for aluminium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opuntia fícus - indica (L.) Mill is a cactacea presents in the Caatinga ecosystem and shows in its chemical c omposition flavonoids, galacturonic acid and sugars. Different hydroglicolic (EHG001 and EHG002) and hydroethanolic subsequently lyophilized (EHE001 and EHE002) extracts were developed. The EHE002 had his preliminary phytochemical composition investigated by thin layer chromatography (TLC) and we observed the predominance of flavonoids. Different formulations were prepared as emulsions with Sodium Polyacrylate (and) Hydrogenated Polydecene (and) Trideceth - 6 (Rapithix® A60), and Polyacrylamide (and) C13 - 14 I soparaffin (and) Laureth - 7 (Sepigel® 305), and gel with Sodium Polyacrylate (Rapithix® A100). The sensorial evaluation was conducted by check - all - that - apply method. There were no significant differences between the scores assigned to the formulations, howe ver, we noted a preference for those formulated with 1,5% of Rapithix® A100 and 3,0% of Sepigel® 305. These and the formulation with 3% Rapithix® A60 were tested for preliminary and accelerated stability. In accelerated stability study, samples were stored at different temperatures for 90 days. Organoleptic characteristics, the pH values and rheological behavior were assessed. T he emulsions formulated with 3,0% of Sepigel® 305 and 1,5% of Rapithix® A60 w ere stable with pseudoplastic and thixotropic behavior . The moisturizing clinical efficacy of the emulsions containing 3,0% of Sepigel® 305 containing 1 and 3% of EHG001 was performed using the capacitance method (Corneometer®) and transepidermal water lost – TEWL evaluation ( Tewameter®). The results showed t hat the formulation with 3% of EHG001 increased the skin moisturizing against the vehicle and the extractor solvent formulation after five hours. The formulations containing 1 and 3% of EHG001 increased skin barrier effect by reducing transepidermal water loss up to four hours after application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dengue fever, currently the most important arbovirus, is transmitted by the bite of the Aedes aegypti mosquito. Given the absence of a prophylactic vaccine, the disease can only be controlled by combating the vector insect. However, increasing reports of resistance and environmental damage caused by insecticides have led to the urgent search for new safer alternatives. Twenty - um plant s eed extracts from the Caatinga were prepared , tested and characterized . Sodium phosphate ( 50 mM pH 8.0) was used as extractor. All extracts showed larvicidal and ovipositional deterrence activity . Extracts of D. grandiflora, E. contortisiliquum, A. cearenses , C. ferrea and C. retusa were able to attract females for posture when in low co ncentration . In the attractive concentrations, the CE of E. contortisiliquum and A. cearenses were able to kill 52% and 100% of the larvae respectively . The extracts of A. cearenses , P. viridiflora, E. velutina, M. urundeuva and S. brasiliensis were also pupicides, while extracts of P. viridiflora, E. velutina, E. contortisiliquum , A. cearenses, A. colubrina, D. grandiflora , B. cheilantha , S. spectabilis, C. pyramidalis, M. regnelli e G. americana displayed adulticidal activity. All extracts were toxic to C. dubia zooplankton . The EB of E. velutina and E. contortisiliquum did not affect the viability of fibroblasts . In all extracts were identified at least two potential insecticidal proteins such as enzyme inhibitors, lectins and chitin - binding proteins and components of secondary metabolism . Considering all bioassays , the extracts from A. cearenses, P. viridiflora, E. contortisiliquum , S. brasiliensis, E. velutina and M. urundeuva were considered the most promising . The E. contortisiliquum extracts was the only one who did not show pupicida activity, indicating that its mechanism of action larvicide and adulticidal is related only to the ingesti on of toxic compounds by insect , so it was selected to be fragmenting. As observed for the CE , th e protein fractions of E. contortisiliquum also showed larvicidal activity, highlighting that F2 showed higher larvicidal activity and lower en vironmental toxicity than the CE source. The reduction in the proteolytic activity of larvae fed with crude extra ct and fractions of E. contortisiliquum suggest ed that the trypsin inhibitors ( ITEc) would be resp onsible for larvicidal activity . However the increase in the purification of this inhibitor resulted in loss of larvicidal activity , but the absence of trypsin inhibitor reduced the effectiveness of the fractions , indicating that the ITEC contributes to the larvicidal activity of this extract. Not been observed larvicidal activity and adulticide in rich fraction vicilin, nor evidence of the contribution o f this molecule for the larvicidal activity of the extract. The results show the potential of seeds from plant extracts of Caatinga as a source of active molecules against insects A. aegypti at different stages of its development cycle, since they are comp osed of different active compounds, including protein nature, which act on different mechanisms should result in the death of insec

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional control schemes applied to Shunt Active Power Filters (SAPF) are Harmonic extractor-based strategies (HEBSs) because their effectiveness depends on how quickly and accurately the harmonic components of the nonlinear loads are identified. The SAPF can be also implemented without the use of the load harmonic extractors. In this case, the harmonic compensating term is obtained from the system active power balance. These systems can be considered as balanced-energy-based schemes (BEBSs) and their performance depends on how fast the system reaches the equilibrium state. In this case, the phase currents of the power grid are indirectly regulated by double sequence controllers with two degrees of freedom, where the internal model principle is employed to avoid reference frame transformation. Additionally the DSC controller presents robustness when the SAPF is operating under unbalanced conditions. Furthermore, SAPF implemented without harmonic detection schemes compensate simultaneously harmonic distortion and reactive power of the load. Their compensation capabilities, however, are limited by the SAPF power converter rating. Such a restriction can be minimized if the level of the reactive power correction is managed. In this work an estimation scheme for determining the filter currents is introduced to manage the compensation of reactive power. Experimental results are shown for demonstrating the performance of the proposed SAPF system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of plants for medicinal purposes is ancient, with widespread application in medicinal drugs. Although plants are promising sources for the discovery of new molecules of pharmacological interest, estimates show that only 17% of them have been studied for their possible use in medicine. Thus, biodiversity of Brazilian flora represents an immense potential for economic use by the pharmaceutical industry. The plant Arrabidaea chica, popularly known as “pariri”, is common in the Amazon region, and it is assigned several medicinal properties. The leaves of this plant are rich in anthocyanins, which are phenolic compounds with high antioxidant power. Antioxidant compounds play a vital role in the prevention of neurological and cardiovascular diseases, cancer and diabetes, among others. Within the anthocyanins found in Arrabidaea chica, stands out Carajurin (6,7-dihydroxy-5,4’- dimethoxy-flavilium), which is the major pigment encountered in this plant. The present work aimed to study on supercritical extraction and conventional extraction (solid-liquid extraction) in leaves of Arrabidaea chica, evaluating the efficiency of the extractive processes, antioxidant activity and quantification of Carajurin contained in the extracts. Supercritical extraction used CO2 as solvent with addition of co-solvent (ethanol/water mixture) and were conducted by the dynamic method in a fixed bed extractor. The trials followed a 24-1 fractional factorial design, the dependent variables were: process yield, concentration of Carajurin and antioxidant activity; and independent variables were: pressure, temperature, concentration of co-solvent (v/v) and concentration of water in the co-solvent mixture (v/v). Yields (mass of dry extract/mass of raw material used) obtained from supercritical extraction ranged from 15.1% to 32%, and the best result was obtained at 250 bar and 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 50%. Through statistical analysis, it was found that the concentration of co-solvent revealed significant effect on the yield. Yields obtained from conventional extractions were of 8.1% (water) and 5.5% (ethanol). Through HPLC (High-performance liquid chromatography) analysis, Carajurin was quantified in all the extracts and concentration values (Carajurin mass/mass of dry extract) ranged between 1% and 2.21% for supercritical extraction. For conventional extraction, Carajurin was not detected in the aqueous extract, while the ethanol extract showed Carajurin content of 7.04%, and therefore, more selective in Carajurin than the supercritical extraction. Evaluation of antioxidant power (radical 2,2-diphenyl-1-picrylhydrazyl – DPPH – sequestration method) of the supercritical extracts resulted in EC50 values (effective concentration which neutralizes 50% of free radicals) ranged from 38.34 to 86.13 μg/mL, while conventional extraction resulted in EC50 values of 167.34 (water) and 42.58 (ethanol) μg/mL. As for the quantification of total phenolic content (Folin-Ciocalteau analysis) of the supercritical extracts resulted in values ranged from 48.93 and 88.62 mg GAE/g extract (GAE = Gallic Acid Equivalents), while solid-liquid extraction resulted in values of 37.63 (water) and 80.54 (ethanol) mg GAE/g extract. The good antioxidant activity cannot be attributed solely to the presence of Carajurin, but also the existence of other compounds and antioxidants in Arrabidaea chica. By optimizing the experimental design, it was possible to identify the experiment that presented the best result considering the four dependent variables together. This experiment was performed under the following conditions: pressure of 200 bar, temperature of 40 °C, co-solvent concentration equal to 30% and concentration of water in the co-solvent mixture equal to 30%. It is concluded that, within the studied range, it is possible to purchase the optimum result using milder operating conditions, which implies lower costs and greater ease of operation.