20 resultados para estratigrafia

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study has as a main objective to make a detailed stratigraphic analysis of the Aptian-Albian interval in the east part of Araripe Basin, NE of Brazil which correspond, litostratigraphically, to Rio Da Batateira, Crato, Ipubi and Romualdo formations. The stratigraphic analysis was based on three different stages, the 1D, 2D and 3D analysis; these ones were adapted to the sequence stratigraphy concepts in order to create a chronostratigraphic framework for the study area within the basin. The database used in the present study contains field and well information, wells that belong to Santana Project, carried out by the Ministério de Minas e Energia- DNPM- CPRM from 1977 to 1978. The analysis 1D, which was done separately for each well and outcrop allowed the recognition of 13 sedimentary facies, mainly divided based on predominant litologies and sedimentary structures. Such facies are lithologically represented by pebble, sandstones, claystones, margas and evaporates; these facies are associated in order to characterize different depositional systems, that integrate from the continental environment (fluvial system and lacustre), paralic system (delta system and lagunar) to the marine environment (shelfenvironment). The first one, the fluvial system was divided into two subtypes: meandering fluvial system, characterized by fill channel and floodplain deposits; the facies of this system are associated vertically according to the textural thinning upward cycles (dirting-up trend pattern in well logs). Lacustrine environment is mainly related with the lithotypes of the Crato Formation, it shows a good distribution within the basin, been composed by green claystone deposits and calcareous laminated. Deltaic System represented by prodelta and delta front deposits which coarsening upward tendency. Lagunar system is characterised by the presence of anhydrite and gypsum deposits besides the black claystone deposits with vegetal fragments which do not contain a fauna typically marine. The marine platform system is composed by successions of black and gray claystone with fossiliferous fauna of Dinoflagellates (Spiniferites Mantell, Subtilisphaera Jain e Subtilisphaera Millipied genre) typical of this kind of depositional system. The sedimentary facies described are vertically arranged in cycles with progradational patterns which form textural coersening upward cycles and retrogradational, represented by textural thinning dowward cycles. Based in these cycles, in their stack pattern and the vertical change between these patterns, the systems tracks and the depositional sequences were recognized. The Low System Track (LST) and High System Track (HST) are composed by cycles with progradational stack pattern, whereas the Trangessive System Track (TST) is composed by retrogradational stack pattern cycles. The 2D stratigraphic analysis was done through the carrying out of two stratigraphic sections. For the selection of the datum the deepest maximum flooding surface was chosen, inside the Sequence 1, the execution of these sections allowed to understand the behaviour of six depositional systems along the study area, which were interpreted as cycles of second order or supercycles (cycles between 3 and 10 Ma), according to the Vail, et al (1977) classification. The Sequence 1, the oldest of the six identified is composed by the low, transgressive and high systems tracks. The first two system tracks are formed exclusively by fluvial deposits of the Rio da Batateira Formation whereas the third one includes deltaic and lacustrine deposits of the Crato Formation. The sequences 2 and 3 are formed by the transgressive systems tracks (lake spreading phase) and the highstand system track (lake backward phase). The TST of these sequences are formed by lacustrine deposits whereas HST contains deltaic deposits, indicating high rates of sedimentary supply at the time of it s deposition. The sequence 4 is composed by LST, TST and HST, The TST4 shows a significant fall of the lake base level, this track was developed in conditions of low relation between the creation rate of space of accommodation and the sedimentary influx. The TST4 marks the third phase of expansion of the lacustrine system in the section after the basin´s rift, the lacustrine system established in the previous track starts a backward phase in conditions that the sedimentary supply rate exceeds the creation rate of space accommodation. The sequence 5 was developed in two different phases, the first one is related with the latest expansion stage of the lake, (TST5), the basal track of this sequence. In this phase the base level of the lake rose considerably. The second phase (related to the TST5) indicates the end of the lacustrine domain in the Araripe Basin and the change to lagunar system ant tidal flat, with great portions in the supratidal. These systems were formed by restricted lagoons, with shallow level of water and with intermittent connections with the sea. This, was the phase when the Araripe Basin recorded the most several arid conditions of the whole interval studied, Aptian Albian, conditions that allow the formation of evaporitic deposits. The sequence 6 began its deposition after a significant fall of the sea (LST6). The sequence 6 is without any doubtlessly, the sequence that has deposits that prove the effective entrance of the sea into the Araripe Basin. The TST6, end of this sequence, represents the moment which the sea reaches its maximum level during the Aptian Albian time. The stratigraphic analysis of the Aptian Albian interval made possible the understanding that the main control in the development of the depositional sequences recognized in the Araripe Basin were the variations of the local base level, which are controlled itself by the climate changes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until some years ago, weathering geochronology was primarily based on the K-Ar and 40Ar/39Ar dating of supergene minerals. Recent advances in the analysis of supergene goethite by the (U-Th)/He method expanded the number of suitable minerals for such purpose, as well as the time of application for weathering geochronology. This study represents the first systematic approach in Brazil, combining both the 40Ar/39Ar e (U-Th)/He methodologies to improve the knowledge on the weathering and the age of nonfossiliferous sediments. Supported by geologic and geomorphologic correlations, we identified different types of weathering profiles occurring in the interior and coastal areas of northeastern Brazil. These profiles were correlated to main regional geomorphological domains: the Borborema Plateau , the Sertaneja Depression , and the Coastal Cuestas and Plains, and respective planation surfaces, which study is fundamental to understand the landscape evolution of the northern portion of the eastern Borborema Province. The depth and stratigraphic organization of the weathering profiles in each of the geomorphological domains permitted to establish that: (i) the profiles on the highlands that cap the Borborema Surface are deeper (up to 100 m) and can be considered as typical lateritic profiles; (ii) on the lowlands that form the Sertaneja Surface , the weathering profiles are shallow and poorly developed (2-5 m deep); (iii) the profiles along the coastal area are moderately developed (up to 25 m deep), and are characterized by thick saprolites and mottle zones. Aiming to establish the timing of the evolution of northeastern Brazil, we studied 29 weathering profiles representing distinct topographic levels of the Borborema Province, from the highlands to the coast, through the analysis of 248 grains of supergene manganese oxides using laser step-heating 40Ar/39Ar geochronology. Additionally, we applied the (U-Th)/He method in 20 weathering profiles, by dating 171 grains of supergene iron oxides and hydroxides. Geochronological results for 248 grains of manganese oxides analyzed by the 40Ar/39Ar method indicate that the weathering profiles in the study area record the history of weathering from the Oligocene to the Pleistocene, with ages in the order of 31.4 ± 1.0 Ma to 0.8 ± 0.4 Ma. Dating of 171 grains of goethite by the (U-Th)/He method yielded ages ranging from 43.2 ± 4.3 Ma to 0.8 ± 0.1 Ma, suggesting the weathering processes last from the Eocene to the Pleistocene. The precipitation of supergene goethite in this interval confirms the age of the weathering processes identified from the manganese oxides record. 105 goethite grains from 8 different occurrences of the Barreiras Formation were dated by the (U-Th)/He method. Five grains collected from the cement in the Barreiras Formation sandstones, in the Lagoa Salgada and Rio do Fogo coastal cuestas, yielded ages of 17.6 ± 1.8 Ma, 17.3 ± 1.7 Ma, 16.3 ± 1.6 Ma, 16.2 ± 1.6 Ma and 13.6 ± 1.4 Ma. Results of 69 goethite grains from authigenic pisoliths collected in 7 different localities also yielded concordant ages, varying from 17.8 ± 1.8 to 7.5 ± 0.8 Ma. Results obtained from 31 detrital grains are concordant in 3 distinct localities (Lagoa Salgada, Praia da Garças e Ponta Grossa); they vary in the range of 43.2 ± 4.3 to 21.6 ± 2.2 Ma, and indicate that the maximum age for the Barreiras Formation deposition is around 22 Ma. 40Ar/39Ar results for 15 manganese oxides grains associated with the Barreiras Formation weathering profiles, in 3 different localities, vary from 13.1 ± 0.9 to 7.7 ± 0.4 Ma, in the same range of ages obtained by the (U-Th)/He method. The systematic application of the 40Ar/39Ar and (U-Th)/He methods, respectively for manganese oxides and goethites, show that the Barreiras Formation sediments were already deposited since ca. 17 Ma, and that the weathering processes were active until ca. 7 Ma ago. The ages obtained from manganese oxides collected in the Cenozoic basalts (Macau Formation) also reveal a weathering history between 19 and 7 Ma, pointing to hot and humid conditions during most of the Miocene. 40Ar/39Ar ages yielded by manganese oxides associated with the Serra do Martins Formation vary from 14.1 ± 0.4 to 10.5 ± 0.3 Ma. On the other hand, (U-Th)/He ages from iron oxides/hydroxides collected in the Serra do Martins Formation mesas vary from 20.0 ± 2.0 to 5.5 ± 0.6 Ma, indicating that those sediments are older than 20 Ma. 40Ar/39Ar and (U-Th)/He results produced in this study are in agreement with paleoclimatic interpretations based on stable isotopes and clay index values measured in the Atlantic Ocean sediments, validating the use of weathering geochronology to investigate paleoclimatic variations. The direct dating of the Barreiras Formation permitted, for the first time, confident inferences on the age of the brittle deformation recorded by this sedimentary unit in the Rio Grande do Norte and Ceará states. The first event, syn-deposition, occurred during the early Miocene; an younger event, related to the post-depositional deformation of the Barreiras Formation, is associated with tectonic activity from the very early Miocene to the Holocene. In agreement with data from other areas, results obtained in this study reveal that the depth and complexity of the weathering profiles reflect the time of exposition of such areas to the weathering agents close to the surface. However, there is no clear relationship between ages vs. altitude. The depth and the stratigraphic organization of weathering profiles in northeastern Brazil, contrary to the southeastern Brazil pattern, do not vary toward the coast. In our study area, field observations reveal the presence of ancient, thick and complex lateritic profiles preserved in the sedimentary mesas on the Borborema Plateau, as younger, narrow and incipient ones occur in the dissected areas. Geochronological results obtained for these profiles yielded older ages on the high altitudes, and younger ages in the lowlands, suggesting the scarp retreatment is the most reliable model to explain the regional landscape evolution. However, in the coastal lowlands, the relatively older ages obtained indicate that more complexes processes were involved in the modeling of the local relief

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with the tectonic-stratigraphic evolution of the Transitional Sequence in the Sergipe Sub-basin (the southern segment of the Sergipe-Alagoas Basin, Northeast Brazil), deposited in the time interval of the upper Alagoas/Aptian stage. Sequence boundaries and higher order internal sequences were identified, as well as the structures that affect or control its deposition. This integrated approach aimed to characterize the geodynamic setting and processes active during deposition of the Transitional Sequence, and its relations with the evolutionary tectonic stages recognized in the East Brazilian Margin basins. This subject addresses more general questions discussed in the literature, regarding the evolution from the Rift to the Drift stages, the expression and significance of the breakup unconformity, the relationships between sedimentation and tectonics at extensional settings, as well as the control on subsidence processes during this time interval. The tectonic-stratigraphic analysis of the Transitional Sequence was based on seismic sections and well logs, distributed along the Sergipe Sub-basin (SBSE). Geoseismic sections and seismic facies analysis, stratigraphic profiles and sections, were compiled through the main structural blocks of this sub-basin. These products support the depositional and tectonic-stratigraphic evolutionary models built for this sequence. The structural analysis highlighted similarities in deformation styles and kinematics during deposition of the Rift and Transitional sequences, pointing to continuing lithospheric extensional processes along a NW trend (X strain axis) until the end of deposition of the latter sequence was finished by the end of late Aptian. The late stage of extension/rifting was marked by (i) continuous (or as pulses) fault activity along the basin, controling subsidence and creation of depositional space, thereby characterizing upper crustal thinning and (ii) sagstyle deposition of the Transitional Sequence at a larger scale, reflecting the ductile stretching and thinnning of lower and sub crustal layers combined with an increasing importance of the thermal subsidence regime. Besides the late increments of rift tectonics, the Transitional Sequence is also affected by reactivation of the border faults of SBSE, during and after deposition of the Riachuelo Formation (lower section of the Transgressive Marine Sequence, of Albian age). It is possible that this reactivation reflects (through stress propagation along the newlycreated continental margin) the rifting processes still active further north, between the Alagoas Sub-basin and the Pernambuco-Paraíba Basin. The evaporitic beds of the Transitional Sequence contributed to the development of post-rift structures related to halokinesis and the continental margin collapse, affecting strata of the overlying marine sequences during the Middle Albian to the Maastrichtian, or even the Paleogene time interval. The stratigraphic analysis evidenced 5 depositional sequences of higher order, whose vertical succession indicates an upward increase of the base level, marked by deposition of continental siliciclastic systems overlain by lagunar-evaporitic and restricted marine systems, indicating that the Transitional Sequence was deposited during relative increase of the eustatic sea level. At a 2nd order cycle, the Transitional Sequence may represent the initial deposition of a Transgressive Systems Tract, whose passage to a Marine Transgressive Sequence would also be marked by the drowning of the depositional systems. At a 3rd order cycle, the sequence boundary corresponds to a local unconformity that laterally grades to a widespread correlative conformity. This boundary surface corresponds to a breakup unconformity , being equivalent to the Pre-Albian Unconformity at the SBSE and contrasting with the outstanding Pre-upper Alagoas Unconformity at the base of the Transitional Sequence; the latter is alternatively referred, in the literature, as the breakup unconformity. This Thesis supports the Pre-Albian Unconformity as marker of a major change in the (Rift-Drift) depositional and tectonic setting at SBSE, with equivalent but also diachronous boundary surfaces in other basins of the Atlantic margin. The Pre-upper Alagoas Unconformity developed due to astenosphere uplift (heating under high lithospheric extension rates) and post-dates the last major fault pulse and subsequent extensive block erosion. Later on, the number and net slip of active faults significantly decrease. At deep to ultra deep water basin segments, seaward-dipping reflectors (SDRs) are unconformably overlain by the seismic horizons correlated to the Transitional Sequence. The SDRs volcanic rocks overly (at least in part) continental crust and are tentatively ascribed to melting by adiabatic decompression of the rising astenospheric mantle. Even though being a major feature of SBSE (and possibly of other basins), the Pre-upper Alagoas Unconformity do not correspond to the end of lithospheric extension processes and beginning of seafloor spreading, as shown by the crustal-scale extensional structures that post-date the Transitional Sequence. Based on this whole context, deposition of the Transitional Sequence is better placed at a late interval of the Rift Stage, with the advance of an epicontinental sea over a crustal segment still undergoing extension. Along this segment, sedimentation was controled by a combination of thermal and mechanical subsidence. In continuation, the creation of oceanic lithosphere led to a decline in the mechanical subsidence component, extension was transferred to the mesoceanic ridge and the newly-formed continental margin (and the corresponding Marine Sequence) began to be controlled exclusively by the thermal subsidence component. Classical concepts, multidisciplinary data and new architectural and evolutionary crustal models can be reconciled and better understood under these lines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This MSc dissertation presents the results of a research carried out in a 500 km2 area in the Nísia Floresta county. The main goal of the research was to evaluate fault influence on hidrology features of aquifers and lakes, mainly in the Barreiras Group and in the Bonfim lake cluster respectively. The Precambrian crystalline basement is made of Caicó Complex rocks. They are capped by cretaceous sedimentary rocks and by cenozoic sedimentary rocks. Only the latter outcrop in the study area, wheareas the former are described in boreholes. Faults cut across all stratigraphic units and their main trends are NW, NE and E-W, which have been generated by E-W compression. Subordinate N-S trending faults also take place and have been generated by N-S oriented compression. Fault controlled hydrologic features are observed throughout the study area. There are sudden changes in saturated thicknesses of the Barreiras Aquifer due to vertical displacement of the Barreiras Group. The most important underground water source of the Bonfim Lake is related to abrupt thickness changes of the aquifer. In addition, the main faults control the underground drainage network and, probably, change in direction of equipotential surfaces seen on the potenciometric map. Regarding the surface hydrologic features, faults also control river and stream channels, as well as lake origin and shapes. The Bonfim Lake, in particular, has its peculiar shape, which follows NW and NE lineaments, and origin related to faulting and probably underground carstics processes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Through an integrated approach, using litho, chrono and biostratigraphic data, the relative importance of climate variations and tectonics were recognized in rift sediments of the onshore Potiguar Basin, Northeast Brazil. Concepts of sequence stratigraphy were applied as a template to integrate sedimentological and geochemical data (oxygen isotopes), as well as quantitative palynologic methods to address and recognize the main depositional patterns produced in a rift basin. The main objective was to address the relative importance of climate changes and tectonics to the resultant stratigraphic architecture. The results of computer simulations of sedimentary basin fills of rift basins were quite useful to test working hypothesis and mimic the process of filling a half graben during a rift event. The studied section includes a neovalanginian-eobarremian (Lower Cretaceous) rift interval from the Pendência Formation, located in the southwestern portion of Umbuzeiro Graben, in the offshore Potiguar Basin. The depositional setting is interpreted as progradational deltaic system entering a lake from its flexural margin. Sismoestratigraphyc and well logs analyses allowed to interpret two regressive intervals (Green and Yellow Sequences), separated by a broad transgressive interval (Orange Sequence), known as the Livramento Shale. The depositional history encompass three stages: two tectonically active phases, during the deposition of the Green and Yellow Sequences, and a tectonically quiescent phase, during the deposition of the Orange Sequence. Paleoclimatic interpretation, based on quantitative palynology and geochemical data (��18O), suggests a tendency to arid conditions during the tectonically active phases and wet conditions during the tectonically quiescent phase. Stratigraphic modeling and backstripping techniques, supported by paleoclimatic/paleoecologic interpretations provide a powerful methodology to evaluate the tectonic and climatic controls on tectonic lakes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On the modern Continental Shelf to the north of Rio Grande do Norte state (NE Brazil) is located a paleo-valley, submerged during the last glacial sea-level lowstand, that marks continuation of the most important river of this area (Açu River). Despite the high level of exploration activity of oil industry, there is few information about shallow stratigraphy. Aiming to fill this gap, situated on the Neogene, was worked a marine seismic investigation, the development of a processing flow for high resolution data seismic, and the recognition of the main feature morphology of the study area: the incised valley of the River Açu. The acquisition of shallow seismic data was undertaken in conjunction with the laboratory of Marine Geology/Geophysics and Environmental Monitoring - GGEMMA of Federal University of Rio Grande do Norte UFRN, in SISPLAT project, where the geomorphological structure of the Rio paleovale Açu was the target of the investigation survey. The acquisition of geophysical data has been over the longitudinal and transverse sections, which were subsequently submitted to the processing, hitherto little-used and / or few addressed in the literature, which provided a much higher quality result with the raw data. Once proposed for the flow data was developed and applied to the data of X-Star (acoustic sensor), using available resources of the program ReflexW 4.5 A surface fluvial architecture has been constructed from the bathymetric data and remote sensing image fused and draped over Digital Elevation Models to create three-dimensional (3D) perspective views that are used to analyze the 3D geometry geological features and provide the mapping morphologically defined. The results are expressed in the analysis of seismic sections that extend over the region of the continental shelf and upper slope from mouth of the Açu River to the shelf edge, providing the identification / quantification of geometrical features such as depth, thickness, horizons and units seismic stratigraphyc area, with emphasis has been placed on the palaeoenvironmental interpretation of discordance limit and fill sediment of the incised valley, control by structural elements, and marked by the influence of changes in the sea level. The interpretation of the evolution of this river is worth can bring information to enable more precise descriptions and interpretations, which describes the palaeoenvironmental controls influencing incised valley evolution and preservation to provide a better comprehensive understanding of this reservoir analog system

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rio do Peixe Basin is located in the border of Paraíba and Ceará states, immediately to the north of the Patos shear zone, encompassing an area of 1,315 km2. This is one of the main basins of eocretaceous age in Northeast Brazil, associated to the rifting event that shaped the present continental margin. The basin can be divided into four sub-basins, corresponding to Pombal, Sousa, Brejo das Freiras and Icozinho half-grabens. This dissertation was based on the analysis and interpretation of remote sensing products, field stratigraphic and structural data, and seismic sections and gravity data. Field work detailed the lithofacies characterization of the three formations previously recognised in the basin, Antenor Navarro, Sousa and Rio Piranhas. Unlike the classical vertical stacking, field relations and seismostratigraphic analysis highlighted the interdigitation and lateral equivalency between these units. On bio/chrono-stratigraphic and tectonic grounds, they correlate with the Rift Tectonosequence of neocomian age. The Antenor Navarro Formation rests overlies the crystalline basement in non conformity. It comprises lithofacies originated by a braided fluvial system system, dominated by immature, coarse and conglomeratic sandstones, and polymict conglomerates at the base. Its exposures occur in the different halfgrabens, along its flexural margins. Paleocurrent data indicate source areas in the basement to the north/NW, or input along strike ramps. The Sousa Formation is composed by fine-grained sandstones, siltites and reddish, locally grey-greenish to reddish laminated shales presenting wavy marks, mudcracks and, sometimes, carbonate beds. This formation shows major influence of a fluvial, floodplain system, with seismostratigraphic evidence of lacustrine facies at subsurface. Its distribution occupies the central part of the Sousa and Brejo das Freiras half-grabens, which constitute the main depocenters of the basin. Paleocurrent analysis shows that sediment transport was also from north/NW to south/SE

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to its high resolution, Ground Penetrating Radar (GPR) has been used to image subsurface sedimentary deposits. Because GPR and Seismic methods share some principles of image construction, the classic seismostratigraphic interpretation method has been also applied as an attempt to interpret GPR data. Nonetheless some advances in few particular contexts, the adaptations from seismic to GPR of seismostratigraphic tools and concepts unsuitable because the meaning given to the termination criteria in seismic stratigraphy do not represent the adequate geologic record in the GPR scale. Essentially, the open question relies in proposing a interpretation method for GPR data which allow not only relating product and sedimentary process in the GPR scale but also identifying or proposing depositional environments and correlating these results with the well known Sequence Stratigraphy cornerstones. The goal of this dissertation is to propose an interpretation methodology of GPR data able to perform this task at least for siliciclastic deposits. In order to do so, the proposed GPR interpretation method is based both on seismostratigraphic concepts and on the bounding surface hierarchy tool from Miall (1988). As consequence of this joint use, the results of GPR interpretation can be associated to the sedimentary facies in a genetic context, so that it is possible to: (i) individualize radar facies and correlate them to the sedimentary facies by using depositional models; (ii) characterize a given depositional system, and (iii) determine its stratigraphic framework highligthing how it evolved through geologic time. To illustrate its use the proposed methodology was applied in a GPR data set from Galos area which is part of the Galinhos spit, located in Rio Grande do Norte state, Northeastern Brazil. This spit presents high lateral sedimentary facies variation, containing in its sedimentary record from 4th to 6th cicles caused by high frequency sea level oscillation. The interpretation process was done throughout the following phases: (i) identification of a vertical facies succession, (ii) characterization of radar facies and its associated sedimentary products, (iii) recognition of the associated sedimentary process in a genetic context, and finally (iv) proposal of an evolutionay model for the Galinhos spit. This model proposes that the Galinhos spit is a barrier island constituted, from base to top, of the following sedimentary facies: tidal channel facies, tidal flat facies, shore facies, and aeolic facies (dunes). The tidal channel facies, in the base, is constituted of lateral accretion bars and filling deposits of the channels. The base facies is laterally truncated by the tidal flat facies. In the foreshore zone, the tidal flat facies is covered by the shore facies which is the register of a sea transgression. Finally, on the top of the stratigraphic column, aeolic dunes are deposited due to areal exposition caused by a sea regression

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main objective of the present thesis was the seismic interpretation and seismic attribute analysis of the 3D seismic data from the Siririzinho high, located in the Sergipe Sub-basin (southern portion of Sergipe-Alagoas Basin). This study has enabled a better understanding of the stratigraphy and structure that the Siririzinho high experienced during its development. In a first analysis, we used two types of filters: the dip-steered median filter, was used to remove random noise and increase the lateral continuity of reflections, and fault-enhancement filter was applied to enhance the reflection discontinuities. After this filtering step similarity and curvature attributes were applied in order to identify and enhance the distribution of faults and fractures. The use of attributes and filtering greatly contributed to the identification and enhancement of continuity of faults. Besides the application of typical attributes (similarity and curvature) neural network and fingerprint techniques were also used, which generate meta-attributes, also aiming to highlight the faults; however, the results were not satisfactory. In a subsequent step, well log and seismic data analysis were performed, which allowed the understanding of the distribution and arrangement of sequences that occur in the Siririzinho high, as well as an understanding of how these units are affected by main structures in the region. The Siririzinho high comprises an elongated structure elongated in the NS direction, capped by four seismo-sequences (informally named, from bottom to top, the sequences I to IV, plus the top of the basement). It was possible to recognize the main NS-oriented faults, which especially affect the sequences I and II, and faults oriented NE-SW, that reach the younger sequences, III and IV. Finally, with the interpretation of seismic horizons corresponding to each of these sequences, it was possible to define a better understanding of geometry, deposition and structural relations in the area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Camorim Oilfield, discovered in 1970 in the shallow water domain of the Sergipe Sub-basin, produces hydrocarbons from the Carmópolis Member of the Muribeca Formation, the main reservoir interval, interpreted as siliciclastics deposited in an alluvial-fluvial-deltaic context during a late rifting phase of Neoaptian age, in the Sergipe-Alagoas Basin. The structural setting of the field defines different production blocks, being associated to the evolution of the Atalaia High during the rift stage and subsequent reactivations, encompassing NE-SW trending major normal faults and NWEW trending secondary faults. The complexity of this field is related to the strong facies variation due to the interaction between continental and coastal depositional environments, coupled with strata juxtaposition along fault blocks. This study aims to geologically characterize its reservoirs, to provide new insights to well drilling locations in order to increase the recovery factor of the field. Facies analysis based on drill cores and geophysical logs and the 3D interpretation of a seismic volume, provide a high resolution stratigraphic analysis approach to be applied in this geodynamic transitional context between the rift and drift evolutionary stages of the basin. The objective was to define spatial and time relations between production zones and the preferential directions of fluid flow, using isochore maps that represent the external geometry of the deposits and facies distribution maps to characterize the internal heterogeneities of these intervals, identified in a 4th order stratigraphic zoning. This work methodology, integrated in a 3D geological modelling process, will help to optimize well drilling and hydrocarbons production. This methodology may be applied in other reservoirs in tectonic and depositional contexts similar to the one observed at Camorim, for example, the oil fields in the Aracaju High, Sergipe Sub-basin, which together represent the largest volume of oil in place in onshore Brazilian basins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Cacimbinha and Madeiro beaches are located in the eastern coast of Rio Grande do Norte state, in the municipality of Tibau do Sul. Given the indicative of erosion in the coast of this district and the coastal processes acting on the beaches, the global aim of this project is comprehend the evolution of depositional environment on the Cacimbinha beach, moreover, the project seeks to characterize deposits from the Cacimbinha and Madeiro beaches, according to the geomorphologic compartments identified on these beaches; distinguish the coastal features which possibly interact with the Cacimbinha beach; identify the potential relationship between the sediments from the coastal features and the deposits from Cacimbinha beach; understand which depositional processes that prevail at each facies deposited on the beach; and identify the probable sedimentary environments and its energy of deposition through of the materials recorded on the Cacimbinha beach. This study was based on previous bibliographic and field research, both guided by academic works, laws, concepts and theories concerning the physical geography, geomorphology of the quaternary, sedimentary geology and stratigraphy. Thus, the methodology was divided in three steps: Prefield step: office work was performed; Field step: Sampling of facies of sedimentation; PosField step: analysis and integration of data obtained during the research period. Thus, the results showed deposicional facies with distinguished energy in the relief compartments, beach and terrace. After the sedimentary analysis and its interpretation linked to the architecture of the mounted sections based on drilling, it became possible to trace the evolutionary history of this stretch of beach. Therefore, it can be stated that studies performed on coastal areas are of great importance, as long as, around the world, the most part of urban zones are seated on deposits of quaternary age and, then this work improve the knowledge regarding the sedimentary dynamics of this beach, becoming scientific support for management and planning of this area which focus on, mainly, the foreign tourism

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Parnaíba Basin consists in an intracratonic basin whose sucession of rocks is arranged in five supersequences. The Upper Carboniferous-Lower Triassic Sequence represents the third major sedimentary cycle and corresponds to Balsas Group, which is divided into four units: Piauí Formation, Pedra de Fogo Formation, Motuca Formation and Sambaíba Formation, from base to top. Different interpretations have been made by several authors in recent decades to interpreted the depositional system and environments related to each unit that belongs to this sequence. In general way, it is described as a thick pack of siliciclastic sediments deposited under complex conditions, varying from clastic/evaporitic shallow marine to lacustrine and desert environment. Aiming to clarify the sedimentary sequence evolution, this work underwent a stratigraphic analysis of the Upper Carboniferous-Lower Triassic deposits by applying modern concepts of the sequence stratigraphy based on well and seismic database. Three main depositional sequences of higher frequency were identified in each well analyzed. The sequence 1 corresponds to rocks initially deposited by a fluvial system with braided channel characteristics which evolved to shallow marine with coastal sabkha conditions related to a transgressive stage, that later evolved to a deltaic system. The Sequence 2 corresponds to rocks deposited in a lacustrine/desert environment associated with sabkha generated during a period of increased aridity in which the area occupied by the Parnaíba Basin had been suffering. The registration of a major regressive phase is shown in Sequence 2 which evolved to a dominantly desert environment recorded in Sequence 3. Seismic stratigraphy analyses allow to define a series of stratigraphic surfaces and related genetic units, as well as to infer its lateral expression. Seismic facies associated with such sequences are dominantly parallel and sub-parallel, with good lateral continuity, suggesting the sedimentary rate was relatively constant during deposition.