2 resultados para equazione ipergeometrica equazione di Legendre funzioni speciali
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The present thesis is an analysis of Adrien-Marie Legendre s works on Number Theory, with a certain emphasis on his 1830 edition of Theory of Numbers. The role played by these works in their historical context and their influence on the development of Number Theory was investigated. A biographic study of Legendre (1752-1833) was undertaken, in which both his personal relations and his scientific productions were related to certain historical elements of the development of both his homeland, France, and the sciences in general, during the 18th and 19th centuries This study revealed notable characteristics of his personality, as well as his attitudes toward his mathematical contemporaries, especially with regard to his seemingly incessant quarrels with Gauss about the priority of various of their scientific discoveries. This is followed by a systematic study of Lagrange s work on Number Theory, including a comparative reading of certain topics, especially that of his renowned law of quadratic reciprocity, with texts of some of his contemporaries. In this way, the dynamics of the evolution of his thought in relation to his semantics, the organization of his demonstrations and his number theoretical discoveries was delimited. Finally, the impact of Legendre s work on Number Theory on the French mathematical community of the time was investigated. This investigation revealed that he not only made substantial contributions to this branch of Mathematics, but also inspired other mathematicians to advance this science even further. This indeed is a fitting legacy for his Theory of Numbers, the first modern text on Higher Arithmetic, on which he labored half his life, producing various editions. Nevertheless, Legendre also received many posthumous honors, including having his name perpetuated on the Trocadéro face of the Eiffel Tower, which contains a list of 72 eminent scientists, and having a street and an alley in Paris named after him
Resumo:
O método de combinação de Nelson-Oppen permite que vários procedimentos de decisão, cada um projetado para uma teoria específica, possam ser combinados para inferir sobre teorias mais abrangentes, através do princípio de propagação de igualdades. Provadores de teorema baseados neste modelo são beneficiados por sua característica modular e podem evoluir mais facilmente, incrementalmente. Difference logic é uma subteoria da aritmética linear. Ela é formada por constraints do tipo x − y ≤ c, onde x e y são variáveis e c é uma constante. Difference logic é muito comum em vários problemas, como circuitos digitais, agendamento, sistemas temporais, etc. e se apresenta predominante em vários outros casos. Difference logic ainda se caracteriza por ser modelada usando teoria dos grafos. Isto permite que vários algoritmos eficientes e conhecidos da teoria de grafos possam ser utilizados. Um procedimento de decisão para difference logic é capaz de induzir sobre milhares de constraints. Um procedimento de decisão para a teoria de difference logic tem como objetivo principal informar se um conjunto de constraints de difference logic é satisfatível (as variáveis podem assumir valores que tornam o conjunto consistente) ou não. Além disso, para funcionar em um modelo de combinação baseado em Nelson-Oppen, o procedimento de decisão precisa ter outras funcionalidades, como geração de igualdade de variáveis, prova de inconsistência, premissas, etc. Este trabalho apresenta um procedimento de decisão para a teoria de difference logic dentro de uma arquitetura baseada no método de combinação de Nelson-Oppen. O trabalho foi realizado integrando-se ao provador haRVey, de onde foi possível observar o seu funcionamento. Detalhes de implementação e testes experimentais são relatados