7 resultados para epoxy resin-based root canal sealer
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work aims to study and investigate the use of a hybrid composite polymer formed with blanket aramid (Kevlar 29) fiber blanket flax fiber and particulate dry endocarp of coconut (Cocos nucifera Linn), using as matrix an epoxy resin based thermoset for use in areas of protective equipment. Besides such material is used an aluminum plate, joined to the composite by means of glue based on epoxy and araldite commercial. The manufacturing process adopted was manual lamination (Hand Lay Up) to manufacture the hybrid composite. After the composite is prepared, an aluminum plate is subjected to pressure and glued to cure the adhesive. Layers of veil will also be used to separate the particulate from the linen blanket layer without disturbing the alignment of the fibers of the blankets. To characterize the mechanical and physical behavior was manufactured a plate of 800 x 600 mm of the hybrid composite, which were removed specimens for tests of water absorption to saturation; density; impact test (Charpy) and two test specimens for ballistic testing 220 mm x 200 mm to make a comparative study between the dry state and saturated water absorption and thus see the ballistic performance of these two conditions. The test was applied to make a comparative study of fracture in these two conditions, caused by penetrating ballistic missile (38 and 380). To test the impact (Charpy) will analyze the absorbed energy, fracture appearance and lateral contraction, also in dry condition and saturation of absorbed water, thereby analyzing situations where the impact load is relevant, such as bumps and shocks produced by stone, metal or wooden bars among others. The proposed configuration, along with the tests, has the purpose, application in the fields of equipment against ballistic impact, such as helmets; bullet proof vests; shields; protective packaging and other items to be identified in this research.
Resumo:
The purpose of this study was to evaluate through radiographic and microscopic analysis the efficiency of the filling techniques by vertical hidraulic compression after the root canal mechanical instrumentation in vitro as well to evaluate the marginal apical leakage through macroscopic and microscopic analysis. Thirty human mandibular molars were used , they were divided on three groups, these were subdivided on six subgroups with five specimens each, come down to 106 root canals filled. Initially, the teeth were instrumented with Profile system series 29 and filled with two ways: single accessory cone or single cone associated with gutta-percha secundary cone, with Fill Canal sealer or Sealer 26. Completed the filling, the teeth were coated with araldit and finger -nail polish except for the apical 2 mm and dried for 3 hours, thep radiographs were taken of the teeth in orto and disto-radiai directions. Next, the coronal seal was carried out with composite resin photopolymerized and with their process of making impermeable. Teeth of positive controls were used without araldit and finger-nail polish whereas the negative controls were used with total coat of araldit and finger-nail polish. The specimens were placed in 2% Methylene Blue dye for 24 hours and thermocycled for 7 days. Afterwards, sections were made of each tooth at mesial and distal roat, after this the teeth were radiographed at buccolíngual direction for a macroscopic analysis and at buccolingual and mesiodistal directions for assessment of the marginal apical leakage. Cross sections were made 3 mm to 3mm since the tooth apice. The sections obtained for each group were observed with a stereomicroscope to evaluate the quality of the root canal filling and the marginal apical leakage. The results showed that: In the four techniques the marginal dye leakage was present in the apical third; in all groups the quality of the root canal filling in the radiography was better at mesial root canal and the single cone technique showed inefficient when only a single distal root canal was present. In the radiographic evaluation the best quality of the root canal filling was observed in the 1A group (single accessory cone + FiIl Canal), as in the mesial root as in the distal root wich Shcwed twe root canals: when the distaI root had only one canal. the best result was showed by 28 group (single accessory cone associated with secundary cone + Fill Canal) In the macroscopic analysis of longitudinal !eaKage (outside surface). less leakage was showed as In the mesial root as in the distal root in the negative control group (3) followed 2A group (single accessory cone + Sealer 26). When the microscopic analysis of tranversal leakage of both roots (inside surface) was carried out. the groups that showed less dye leakage were the negative control (38) followed the 28 group (single acessory cone associated with secundary cone + Sealer 26). The homogeneity o filling was best noted in the 1 A group (.single accessoty cone + Fill Canal). The groups that showed less dye penetration in the tranversal leakage (total area) were negative control (3B) and 2B
Resumo:
The use of polymer based coatings is a promising approach to reduce the corrosion problem in carbon steel pipes used for the transport of oil and gas in the oil industry. However, conventional polymer coatings offer limited properties, which often cannot meet design requirements for this type of application, particularly in regard to use temperature and wear resistance. Polymer nanocomposites are known to exhibit superior properties and, therefore, offer great potential for this type of application. Nevertheless, the degree of enhancement of a particular property is greatly dependent upon the matrix/nanoparticle material system used, the matrix/nanoparticle interfacial bonding and also the state of dispersion of the nanoparticle in the polymer matrix. The objective of the present research is to develop and characterize polymer based nanocomposites to be used as coatings in metallic pipelines for the transportation of oil and natural gas. Epoxy/SiO2 nanocomposites with nanoparticle contents of 2, 4, and 8 wt % were processed using a high-energy mill. Modifications of the SiO2 nanoparticles‟ surfaces with two different silane agents were carried out and their effect on the material properties were investigated. The state of dispersion of the materials processed was studied using Scanning and Transmission Electron Microscopy (SEM and TEM) micrographs. Thermogravimetric analysis (TG) were also conducted to determine the thermal stability of the nanocomposites. In addition, the processed nanocomposites were characterized by dynamic mechanical analysis (DMA) to investigate the effect of nanoparticles content and silane treatment on the viscoelastic properties and on the glass transition temperature. Finally, wear tests of the pin-on-disc type were carried out to determine the effects of the nanoparticles and the silane treatments studied. According to the results, the addition of SiO2 nanoparticles treated with silane increased the thermal stability, the storage modulus and Tg of the epoxy resin and decreased wear rate. This confirms that the interaction between the nanoparticles and the polymer chains plays a critical role on the properties of the nanocomposites
Resumo:
The composites manufactured with long fibres aligned in a single direction, and overlay has been shown to have better performance than the short fibers randomly distributed. In particular, the lignocellulosic fibers extracted from the sisal leaves, used in conjunction with the epoxy resin has attracted the attention of many researchers because the final properties of the system formed. In this work composites based on epoxy resin reinforced with sisal fibers were manufactured. The sisal fibres were treated with an alkaline solution of 0.06 mol/l NaOH. The treated, and untreated fibres were subjected to tension x extension tests. The composites were manufactured in the "Lossy" mold with the specifications of the samples to be produced (300x20x4 mm). The tension tests were carried out in accordance with the ASTM standards 3039 (for the composite aligned in a single direction) and ASTM D5573 (for composites in overlay), three point bending tests were performed according to ASTM D790. Analyzing the results of the tests of tension and three point bending tests, it was observed that the composites with the configuration of overlapping had the better elastic module in both tests. As to the maximum resistance to tension, the best result was the composites aligned in a single direction. Tests of absorption of water and micrographs are in progress
Resumo:
Currently, there is a great search for materials derived from renewable sources. The vegetable fibers as reinforcement for polymer matrixes, has been used as an alternative to replace synthetic fibres, being biodegradable and of low cost. The present work aims to develop a composite material with epoxy resin reinforced with curauá fibre with the addition of alumina trihydrate (aluminum hydroxide, Al(OH)3) as a flame retardant, which was used in proportions of 10 %, 20% and 30% of the total volume of the composite. The curauá fibers have gone through a cleaning process with an alkaline bath of sodium hydroxide (NaOH ), parallelized by hand and cut carding according to the default length . They were molded composites with fibers 30cm. Composites were molded in a Lossy Mold with unidirectional fibres in the proportion of 20% of the total volume of the composite. The composites were prepared in the Chemical Processing Laboratory of the Textile Engineering Department at UFRN. To measure the performance of the material, tests for the resistance to traction and flexion were carried out. with samples that were later analyzed in the Electronic Microscopy Apparatus (SEM ). The composites showed good mechanical properties by the addition of flame retardant and in some cases, leaving the composite more vulnerable to breakage. These mechanical results were analyzed by chi-square statistical test at the 5% significance level to check for possible differences between the composite groups. Flammability testing was conducted based on the standard Underwriters Laboratory 94 and the material showed a satisfactory result taking their average burn rate (mm / min) decreasing with increasing addition of the flame retardant composite.
Resumo:
Pipelines for the transport of crude oil from the production wells to the collecting stations are named production lines . These pipes are subjected to chemical and electrochemical corrosion according to the environment and the type of petroleum transported. Some of these lines, depending upon the composition of the fluid produced, may leak within less than one year of operation due to internal corrosion. This work aims at the development of composite pipes with an external protecting layer of high density polyurethane for use in production lines of onshore oil wells, meeting operational requirements. The pipes were manufactured using glass fibers, epoxy resin, polyester resin, quartz sand and high density polyurethane. The pipes were produced by filament winding with the deposition of high density polyurethane on the external surface and threaded ends (API 15 HR/PM-VII). Three types of pipes were manufactured: glass/epoxy, glass/epoxy with an external polyurethane layer and glass/epoxy with an intermediate layer of glass fiber, polyester, sand and with an external polyurethane layer. The three samples were characterized by Scanning Electronic Microscopy (SEM) and for the determination of constituent content. In addition, the following tests were conducted: hydrostatic test, instant rupture, shorttime failure pressure, Gardner impact, transverse stiffness and axial tension. Field tests were conducted in Mossoró RN (BRAZIL), where 1,677 meters of piping were used. The tests results of the three types of pipes were compared in two events: after two months from manufacturing of the samples and after nine months of field application. The results indicate that the glass/epoxy pipes with an intermediate layer of fiber glass composite, polyester e sand and with an external layer of high density polyurethane showed superior properties as compared to the other two and met the requirements of pressure class, axial tensile strength, transverse stiffness, impact and environmental conditions, for onshore applications as production lines
Resumo:
The corrosive phenomenon on reinforced concrete structures is one of the most founded pathologies on the coastal area. With the objective to prevent the process development, or even, retard its beginning, it was studied the application of inorganic covering over concrete surfaces, after its cure, as well as, evaluate the efficiency of the covering applied on the concrete in reducing its porosity of concrete preventing the entrance of aggressive agents to preserve the integrity of the existing armor inside it, comparing the result obtained with the body-of-proof reference, that didn´t receive covering protection. On the concrete production it was used Portland Cement CP II 32, coarse aggregate, fine aggregate and water from the local distributive. Two types of covering were used, one resin based of silicon and solvent and other white cement based, selected sands and acrylic resin. The concrete mixture adopted was 1:1,5:2,5 (cement, fine aggregate, coarse aggregate) and 0.50 water/cement ratio. With the concrete on fresh state was made the experiment test to determinate the workability. On the hardened state was made the concrete resistance experiment, absorption of water and electrochemical experiments, through polarization curves. Also was held optical microscopy and Scanning Electron Microscopy experiments to analyze the layer of the covering applied to the concrete surface and the interface between the concrete and the layer. The obtained results shows that the covering applied to the concrete surface didn´t affect the resistance towards compression. On the absorption of water occurred a diminution of the percentage absorbed, improving the concrete development by making it more impermeable towards the entrance of aggressive agents. The electrochemical experiment results confirmed the water absorption results; the body-of-proof covered presented larger protection towards the development of corrosives process and retarded the evolution of the corrosive phenomenon