58 resultados para enzima

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A proposta foi investigar os aspectos comportamentais referentes ao seguimento da terapêutica farmacológica e não farmacológica e o grau de adesão ao tratamento anti-hipertensivo de um grupo específico. Estudo observacional descritivo com análise quantitativa, realizado no Centro de Referência da Assistência Social em Fortaleza-CE, de agosto/2008 a maio/2009. Dados obtidos de 49 indivíduos por entrevista e exame físico. Mais de 50% dos participantes seguiam as terapêuticas não farmacológicas. Prevaleceram a terapia combinada (53%) e as classes medicamentosas de diuréticos (72%) e inibidores da enzima conversora de angiotensina (55%). Muitos participantes (49%) referiram reações adversas. Destas, as mais citadas foram poliúria e tontura (29%). Quanto ao grau de adesão, a média correspondeu ao conceito não adesão leve. A avaliação dos comportamentos de seguimento terapêutico e a caracterização clínico-epidemiológica são necessárias para o enfermeiro planejar estratégias educativas. Ambas possibilitam ajustes no planejamento das intervenções, contribuindo para a melhor adesão terapêutica dos indivíduos

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Methomyl (Lannate®) is an insecticide from the carbamate group, frequently used in pest control in various types of crops. This compound works inhibiting the activity of the enzyme acetylcholinesterase. The use of physicochemical and ecotoxicological analysis is the most efficient strategy for the correct characterization and control of residues of metomil. The main objectives of this study were to evaluate the acute toxicity of methomyl in 96 hours of exposure and, through a sublethal assay of 5 hours, to assess its effect on the activity of acetylcholinesterase present in brain and squeletic dorsal muscle of the Danio rerio fish. The results showed that the LC50-96 found to D. rerio was 3.4 mg/L and it was found through the average of four definitive tests. In vitro assays were used to test the inhibitory action of methomyl directly over soluble AChE, extracted from the squeletic dorsal muscle, with maximum inhibition of 68.57% to the insecticide concentrations of 0.2 mg/L. In sublethal tests with D. rerio, inhibitory effect of methomyl was found over the soluble form of AChE in the squeletic dorsal muscle, both in one and five hours of fish exposure to the insecticide. In both period, the average values of inhibition were around 61%. In the same condition, no significant inhibitory effect of methomyl soluble and membrane AChE of the D. rerio was observed in the 0.42, 0.85, 1.70 and 2.50 mg/L concentrations and in both times of fish exposure

Relevância:

10.00% 10.00%

Publicador:

Resumo:

-D-glucosidase (EC 3.2.1.21) is one of the most interesting glycosidases, especially for hydrolysis cellobiose releasing glucose, is last step degradation of cellulose. This function makes the -D-glucosidase is of great interest as a versatile industrial biocatalyst, being critical to various bio-treatment / biorefinery processes, such as bioethanol production. Hen in the report, a -D-glucosidase was extracts from protein extracted of the invertebrate marine Artemia franciscana was purified and characterized with a combination of precipitation with ammonium sulfate (0 - 30%, 30 to 50%, 50 to 80%), the fraction saturated in the range of 30 to 50% (called F-II) was applied in a molecular exclusion chromatography, in Sephacryl S-200, the fractions corresponding to the first peak of activity of -D-glucosidase were gathered and applied in a chromatography of ion exchange in Mono Q; the third peak this protein obtained chromatography, which coincides with the peak of activity of -D-glucosidase was held and applied in a gel filtration chromatography Superose 12 where the first peak protein, which has activity of -D-glucosidase was rechromatography on Superose 12. This enzyme is probably multimerica, consisting of three subunit molecular mass of 52.7 kDa (determined by SDS-PAGE) with native molecular mass of 157 kDa (determined by gel filtration chromatography on Superose 12 under the system FPLC). The enzyme was purified 44.09 times with a recovery of 1.01%. Using up p-nitrophenyl-β-D-glucopiranoside as substrate obtained a Km apparent of 0.229 mM and a Vmax of 1.109 mM.60min-1.mL-1mM. The optimum pH and optimum temperature of catalysis of the synthetic substrate were 5.0 and 45 °C, respectively. The activity of the -D-glucosidase was strongly, inhibited by silver nitrate and N- etylmaleimide, this inhibition indicates the involvement of radical sulfidrila the hydrolysis of synthetic substrate. The -D-glucosidase of Artemia franciscana presented degradativa action on celobiose, lactose and on the synthetic substrate -nitrophenyl-β-D-glucopiranoside indicating potential use of this enzyme in the industry mainly for the production of bioethanol (production of alcohol from the participating cellulose), and production hydrolysate milk (devoid of milk lactose)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A β-D-N-acetilglucosaminidase extracted and partially isolated from crustacean Artemia franciscana by ammonium sulfate precipitation and filtration gel chromatography Bio Gel A 1.5m. the enzyme was immobilized on ferromagnetic Dacron yielding a insoluble active derivative with 5.0 units/mg protein and 10.35% of the soluble enzyme activity. β-D-N-acetilglucosaminidase-ferromagnetic Dacron was easily removed from the reaction mixture by a magnetic field, it was reused for ten times without loss in its activity. The ferromagnetic Dacron was better activated at pH 5.0. The particles visualized at scanning electron microscope (SEM) had presented different sizes, varying between 721nm and 100µm. Infra red confirmed immobilization on support, as showed by primary amino peaks at 1640 and 1560 cm-1 . The immobilize enzyme presented Km of 2.32 ± 0.48 mM and optimum temperature of 50°C. Bought presented the same thermal stable of the soluble enzyme and larger enzymatic activity at pH 5.5. β-D-N-acetilglucosaminidase-Dacron ferromagnético showed sensible for some íons as the silver (AgNO3), with loss of activity. The β-D-N acetilglucosaminidase activity for mercury chloride (HgCl2), whom is one of the most toxic substance joined in nature, it was presented activity already diminished at 0,01mM and lost total activity at 4mM, indicating sensitivity for this type of metal. β-D-N-acetilglucosaminidase-ferromagnetic Dacron showed degradative capacity on heparan sulfate, the enzyme still demonstrated degradative capacity on heparan sulphate, suggesting a possible application to produce fractions of this glycosaminoglycan

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) are produced by aerobic metabolism and react with biomolecules, such as lipids, proteins and DNA. In high concentration, they lead to oxidative stress. Among ROS, singlet oxygen (1O2) is one of the main ROS involved in oxidative stress and is one of the most reactive forms of molecular oxygen. The exposure of some dyes, such as methylene blue (MB) to light (MB+VL), is able to generate 1O2 and it is the principle involved in photodynamic therapy (PDT). 1O2 e other ROS have caused toxic and carcinogenic effects and have been associated with ageing, neurodegenerative diseases and cancer. Oxidative DNA damage is mainly repaired by base excision repair (BER) pathway. However, recent studies have observed the involvement of nucleotide excision repair (NER) factors in the repair of this type of injury. One of these factors is the Xeroderma Pigmentosum Complementation Group A (XPA) protein, which acts with other proteins in DNA damage recognition and in the recruitment of other repair factors. Moreover, oxidative agents such as 1O2 can induce gene expression. In this context, this study aimed at evaluating the response of XPA-deficient cells after treatment with photosensitized MB. For this purpose, we analyzed the cell viability and occurrence of oxidative DNA damage in cells lines proficient and deficient in XPA after treatment with MB+VL, and evaluated the expression of this enzyme in proficient and complemented cells. Our results indicate an increased resistance to treatment of complemented cells and a higher level of oxidative damage in the deficient cell lines. Furthermore, the treatment was able to modulate the XPA expression up to 24 hours later. These results indicate a direct evidence for the involvement of NER enzymes in the repair of oxidative damage. Besides, a better understanding of the effects of PDT on the induction of gene expression could be provided

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study examines the chemical composition and their effects on free radicals, inflammation, angiogenesis, coagulation, VEGF effects and cellular proliferation of a polysaccharides from alga Sargassum vulgare. The sulfated polysaccharide was extracted from brown seaweed by proteolysis with enzymes maxataze. The presence of proteins and sugars were observed in crude polysaccharides. Fractionation of this crude extract was made with growing concentration of acetone (0.3-1.5 v) and produced four groups of polysaccharides. Anionic polysaccharides from brown seaweed Sargassum vulgare, SV1and PSV1 were fractionated (SV1) and purified (PSV1), and displayed with high total sugars and sulfate content and very low level of protein. This fucan SV1 contains low levels of protein and high carbohydrate and sulfate content. This polysaccharides prolonged activated partial thromboplastin time (aPTT) at 50 μg (>240 s). SV1 was found to have no effect on prothrombin time (PT), corresponding to the extrinsic pathway of coagulation. SV1 exhibits high antithrombotic action in vivo, with a concentration ten times higher than heparin. Polysaccharides from S. vulgare promoted direct inhibition enzymatic activity of thrombin and stimulated enzymatic activity of FXa. SV1 showed optimal inhibitory activity of thrombin (50.2±0.28%) at a concentration of 25 μg/mL. Its antioxidant action on scavenging radicals by DPPH was (22%), indicating the polymer has no cytotoxic action (hemolytic) on ABO and Rh blood types in different erythrocyte groups and displays strong anti-inflammatory action on all concentrations tested in the carrageenan-induced paw edema model, demonstrated by reduced edema and cellular infiltration. Angiogenesis is a dynamic process of proliferation and differentiation. It requires endothelial proliferation, migration, and tube formation. In this context, endothelial cells are a preferred target for several studies and therapies. The antiangiogenic efficacy of polysaccharides was examined in vivo in the chick chorioallantoic membrane (CAM) model by using fertilized eggs. Decreases in the density of the capillaries were assessed and scored. The results showed that SV1 and PSV1 have an inhibitory effect on angiogenesis. These results were also confirmed by inhibition tubulogenesis in rabbit aorta endothelial cell (RAEC) in matrigel. These compounds were assessed in Apoptosis assay (Annexin V - FITC / PI) and cell viability by MTT assay of RAEC. These polysaccharides do not affect the viability and do not have apoptotic or necrotic action. RAEC cell when incubated with SV1 and PSV1showed inhibition of VEGF secretion, observed when compounds were incubated at 25, 50 and 100 μg/μL. The VEGF secretion with the RAEC cell line for 24 h, was more effective for PSV1 at 50 μg/μL(71.4%) than SV1 100 μg/μL (75.9%). SV1 and PSV1 had an antiproliferative action (47%) against tumor cell line HeLa. Our results indicate that these sulfated polysaccharides have antiangiogenic and antitumoral actions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chitinases are enzymes involved in degradation of chitin and are present in a range of organisms, including those that do not contain chitin, such as bacteria, viruses, plants and animals, and play important physiological and ecological roles. Chitin is hydrolyzed by a chitinolytic system classified as: endo-chitinases, exo-chitinases and N-acetyl-b-D-glucosaminidases. In this study a Litochitinase1 extracted from the cephalotorax of the shrimp Litopenaeus Schmitt was purified 987.32 times using ionexchange chromatography DEAE-Biogel and molecular exclusion Sephacryl S-200. These enzyme presented a molecular mass of about 28.5 kDa. The results, after kinetic assay with the Litochitinase1 using as substrate p-nitrophenyl-N-acetyl-b-Dglucosaminideo, showed apparent Km of 0.51 mM, optimal activity at pH ranging from 5.0 to 6.0, optimum temperature at 55°C and stability when pre-incubated at temperatures of 25, 37, 45, 50 and 55°C. The enzyme showed a range of stability at pH 4.0 to 5.5. HgCl2 inhibited Litochitinase1 while MgCl2 enhances its activity. Antimicrobial tests showed that Litochitinase1 present activity against gram-negative bacterium Escherichia coli in the 800 μg/mL concentration. The larvicidal activity against Aedes aegypti was investigated using crude extracts, F-III (50-80%) and Litochitinase1 at 24 and 48 hours. The results showed larvicidal activity in all these samples with EC50 values of 6.59 mg/mL for crude extract, 5.36 mg/mL for F-III and 0.71 mg/mL for Litochitinase1 at 24 hours and 3.22 and 0.49 mg/mL for the F-III and Litochitinase1 at 48 hours, respectively. Other experiments confirmed the presence of chitin in the midgut of Aedes aegypti larvae, which may be suffering the action of Litochitinase1 killing the larvae, but also the absence of contaminating proteins as serine proteinase inhibitors and lectins in the crude extract, F-III and Litochitinase1, indicating that the death of the larvae is by action of the Litochitinase1. We also observed that the enzymes extracted from intestinal homogenate of the larvae no have activity on Litochitinase1. These results indicate that the enzyme can be used as an alternative to control of infections caused by Escherichia coli and reducing the infestation of the mosquito vector of dengue.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study examines the physical and chemical composition and the pharmacological effects of brown seaweed FRF 0.8 Lobophora variegata. Fractionation of the crude extract was done with the concentration of 0.8 volumes of acetone, obtaining the FRF 0.8. The physicochemical characterization showed that it was a fucana sulfated. Anti-inflammatory activity was assessed by paw edema model by the high rates of inhibition of the edema and the best results were in the fourth hour after induction (100 ± 1.4% at the dose of 75 mg / kg) and by the strong inhibitory activity of the enzyme myeloperoxidase (91.45% at the dose of 25 mg / kg). The hepataproteção was demonstrated by measurements of enzymatic and metabolic parameters indicative of liver damage, such as bilirubin (reduction in 68.81%, 70.68% and 68.21% for bilirubin total, direct and indirect, respectively at a dose of 75 mg / kg), ALT, AST and γ-GT (decrease of 76.93%, 44.58% and 50% respectively at a dose of 75 mg / kg) by analysis of histological slides of liver tissue, confirming that hepatoprotective effect the polymers of carbohydrates, showing a reduction in tissue damage caused by CCl4 and the inhibition of the enzyme complex of cytochrome P 450 (increasing sleep time in 54.6% and reducing the latency time in 71.43%). The effectiveness of the FRF 0.8 angiogenesis was examined in chorioallantoic membrane (CAM) of fertilized eggs, with the density of capillaries evaluated and scored, showing an effect proangigênico at all concentrations tested FRF (10 mg- 1000 mg). The FRF showed antioxidant activity on free radicals (by inhibiting Superoxide Radical in 55.62 ± 2.10%, Lipid Peroxidation in 100.15 ± 0.01%, Hydroxyl Radical in 41.84 ± 0.001% and 71.47 Peroxide in ± 2.69% at concentration of 0.62 mg / mL). The anticoagulant activity was observed with prolongation of activated partial thromboplastin time (aPTT) at 50 mg (> 240 s), showing that its action occurs in the intrinsic pathway of the coagulation cascade. Thus, our results indicate that these sulfated polysaccharides are an important pharmacological target

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heparin, a sulfated polysaccharide, was the first compound used as an anticoagulant and antithrombotic agent. Due to their structural characteristics, also has great potential anti-inflammatory, though such use is limited in inflammation because of their marked effects on coagulation. The occurrence of heparin-like compounds that exhibit anticoagulant activity decreased in aquatic invertebrates, such as crab Goniopsis cruentata, sparked interest for the study of such compounds as anti-inflammatory drugs. Therefore, the objective of this study was to evaluate the potential modulator of heparin-like compound extracted from Goniopsis cruentata in inflammatory events, coagulation, and to evaluate some aspects of its structure. The heparin-type compound had a high degree of N-sulphation in its structure, being able to reduce leukocyte migration into the peritoneal cavity at lower doses compared to heparin and diclofenac sodium (anti-inflammatory commercial). Furthermore, it was also able to inhibit the production of nitric oxide and tumor necrosis factor alpha by activated macrophages, inhibited the activation of the enzyme neutrophil elastase in low concentrations and showed a lower anticoagulant effect in high doses as compared to porcine mucosal heparin. Because of these observations, the compound extracted from crab Goniopsis cruentata can be used as a structural model for future anti-inflammatory agents

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years the heparin has been the subject of several studies that aim to expand its use as a therapeutic agent, due to its ability to modulate the activity of various proteins that play important roles in the regulation of pathophysiological processes. In several experiments and preclinical trials, heparin has demonstrated an anti-inflammatory role. However, its clinical use is limited, due to its strong anticoagulant activity and hemorrhagic complications. For this reason, considerable efforts have been employed in discovery of heparin analogous (heparinoid) with reduced side effects, that retain the anti-inflammatory properties of heparin. In this context, a heparinoid obtained from the head of Litopenaeus vannamei shrimp, which presents a structural similarity to heparin, showed, in previous studies, anti-inflammatory activity in a model of acute peritonitis with reduced anticoagulant effect in vitro and low hemorrhagic activity. Thus, the present work had as objective to evaluate the effect the heparinoid of the cephalothorax of gray shrimp on the acute inflammatory response in different times (3 or 6 hours after the induction of inflammatory stimulus), using the model of acute peritonitis induced in mice. It was also analyzed the HL effect over the activity of elastase, an enzyme involved in leukocyte recruitment. Furthermore to check if the different doses of heparin and heparinoid change the hemostatic balance in vivo, was assessed the effect of these compounds on the plasma clotting time in animals submitted to inflammation. The results show that in 3 hours, all doses of heparinoid were able to prevent efficiently in the acute inflammatory process without any anticoagulant effects, unlike the extrapolation dose of heparin, which has induced a large hemorrhage due its high anticoagulant activity. However, 6 hours after induction of inflammation, only the dosages of 0.1 and 1.0 μg/Kg of heparin and 1.0 μg/Kg of heparinoid kept anti-migratory effect, without changing of the hemostatic balance. These results indicate that the anti-migratory effect of theses compounds depends on the dosage and time of inflammatory stimulus. The HL and heparin were also able to inhibit the activity of the enzyme elastase. The discovery of this bioactive compound in the cephalothorax of shrimps can arouse great interest in biotechnology, since this compound could be useful as a structural model interesting for the development of new therapeutic agents for peritonitis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report shows 2232 times purification of a βNAcetylhexosaminidase from hepatic extracts from the sea mammal Sotalia fluviatilis homogenate with final recovery of 8,4%. Sequenced steps were utilized for enzyme purification: ammonium sulfate fractionation, Biogel A 1.5 m, chitin, DEAESepharose and hydroxyapatite chromatographies. The protein molecular mass was estimated in 10 kDa using SDSPAGE and confirmed by MALDITOF. It was found to have an optimal pH of 5.0 and a temperature of 60°C. Using pnitrophenylNAcetylβDglycosaminide apparent Km and Vmax values were of 2.72 mM and 0.572 nmol/mg/min, respectively. The enzyme was inhibited by mercury chloride (HgCl2) and sodium dodecil sulfate (SDS)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two b-N-acetylhexosaminidases (F11 e F15) were purified from Echinometra lucunter gonads extracts. The purified enzymes were obtained using ammonium sulfate fractionation, followed by gel filtration chromatographies (Sephacryl S-200, Sephadex G-75 and Sephacryl S-200). The F11 fraction was purified 192.47 -fold with a 28.5% yield, and F15 fraction 85.41 -fold with a 32.3% yield. The molecular weights of the fractions were 116 kDa for F11 and 42 kDa for F15 using SDS-PAGE. In Sephacryl S-200, F15 was 84 kDa, indicating that it is a dimeric protein. When p-nitrophenyl-β-D-glycosaminide was used as substrate, we determined an apparent Km of 0.257 mM and Vmax of 0.704 for F11 and for F15 the Km was 0.235 mM and Vmax of 0.9 mM of product liberated by hour. Both enzymes have optimum pH and temperature respectively at 5.0 and 45 °C. The enzymes showed inhibition by silver nitrate, while the glucuronic acid was a potent activator. The high inhibition of F15 by N-etylmaleimide indicates that sulphydril groups are involved in the catalysis of synthetic substrate

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane has an importance in Brazil due to sugar and biofuel production. Considering this aspect, there is basic research being done in order to understand its physiology to improve production. The aim of this research is the Base Excision Repair pathway, in special the enzyme MUTM DNA-glycosylase (formamidopyrimidine) which recognizes oxidized guanine in DNA. The sugarcane scMUTM genes were analyzed using four BACs (Bacterial Artificial Chromosome) from a sugarcane genomic library from R570 cultivar. The resulted showed the presence in the region that had homology to scMUTM the presence of transposable elements. Comparing the similarity, it was observed a highest similarity to Sorghum bicolor sequence, both nucleotide and peptide sequences. Furthermore, promoter regions from MUTM genes in some grass showed different cis-regulatory elements, among which, most were related to oxidative stress, suggesting a gene regulation by oxidative stress

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genome of all organisms constantly suffers the influence of mutagenic factors from endogenous and/or exogenous origin, which may result in damage for the genome. In order to keep the genome integrity there are different DNA repair pathway to detect and correct these lesions. In relation to the plants as being sessile organisms, they are exposed to this damage frequently. The Base Excision DNA Repair (BER) is responsible to detect and repair oxidative lesions. Previous work in sugarcane identified two sequences that were homologous to Arabidopsis thaliana: ScARP1 ScARP3. These two sequences were homologous to AP endonuclease from BER pathway. Then, the aim of this work was to characterize these two sequence using different approaches: phylogenetic analysis, in silico protein organelle localization and by Nicotiana tabacum transgenic plants with overexpression cassette. The in silico data obtained showed a duplication of this sequence in sugarcane and Poaceae probably by a WGD event. Furthermore, in silico analysis showed a new localization in nuclei for ScARP1 protein. The data obtained with transgenic plants showed a change in development and morphology. Transgenic plants had slow development when compared to plants not transformed. Then, these results allowed us to understand better the potential role of this sequence in sugarcane and in plants in general. More work is important to be done in order to confirm the protein localization and protein characterization for ScARP1 and ScARP3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plodia interpunctella (Indian meal moth) is a cosmopolitan pest that attacks not only a wide range of stored grain as well other food products. Due to its economic importance several researches have focused in a method with ability to control this pest with few or no damage to the environment. The study of digestive enzymes inhibitors, lectins and chitin-binding proteins, has often been proposed as an alternative to reduce insect damage. In this study we report the major classes of digestive enzymes during larval growth in P. Interpunctella, being those proteinases actives at pH 9.5 and optimum temperature of 50 oC to both larvae of the 3rd instar and pre-pupal stage of development. In vitro and zymogram assays presented the effects of several inhibitors, such as SBTI, TLCK and PMSF to intestinal homogenate of 3rd instar larvae of 62%, 92% and 87% of inhibition and In pre-pupal stage of 87%, 62 % and 55% of inhibition, respectively. Zymograms showed inhibition of two low molecular masses protein bands by TLCK and that in presence of SBTI were retarded. These results are indicative of predominance of digestive serine proteinases in gut homogenate from Plodia interpunctella larvae. This serine proteinase was then used as a target to evaluate the effect of SBTI on larvae in in vivo assay. Effect of SBTI on mortality and larval mass was not observed at until 4% of concentration (w/w) in diets. Chitin, another target to insecticidal proteins, was observed by chemical method. Moreover, optic microscopy confirmed the presence of a peritrophic membrane. Established this target, in vivo effect of EvV, a chitin binding vicilin, evaluated during the larval development of P. interpunctella and was obtained a LD50 of 0,23% and WD50 of 0,27% to this protein. Mechanism of action was proposed through of the in vivo digestibility of EvV methodology. During the passage through the larval digestive tract was observed that EvV was susceptible to digestive enzymes and a reactive fragment, visualized by Western blotting, produced by digestion was recovered after dissociation of the peritrophic membrane. The bound of EvV to peritrophic membrane was confirmed by immunohystochemical assays that showed strong immunofluorescent signal of EvV-FITC binding and peritrophic membrane. These results are a indicative that vicilins could be utilized as potential insecticide to Plodia interpunctella and a control methods using EvV as bioinsecticide should be studied to reduce lost caused by storage insect pests