4 resultados para electromechanical response mechanisms
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The sequencing of the genome of Chromobacterium violaceum identified one single circular chromosome of 4.8 Mb, in which approximately 40% of the founded ORFs are classified as hypothetical conserved or hypothetical. Some genic regions of biotechnological and biological interest had been characterized, e. g., environmental detoxification and DNA repair genes, respectively. Given this fact, the aim of this work was to identify genes of C. violaceum related to stress response, as the ones involved with mechanisms of DNA repair and/or genomic integrity maintenance. For this, a genomic library of C. violaceum was built in Escherichia coli strain DH10B (RecA-), in which clones were tested to UVC resistance, resulting in five candidates clones. In the PLH6A clone were identified four ORFs (CV_3721 to 3724). Two ORFs, CV_3722 and CV_3724, were subcloned and a synergic complementation activity was observed. The occurrence of an operon was confirmed using cDNA from C. violaceum in a RT-PCR assay. Further, it was observed the induction of the operon after the treatment with UVC. Thus, this operon was related to the stress response in C. violaceum. The mutagenesis assay with rifampicin after the treatment with UVC light showed high frequency of mutagenicity for the ORF CV_3722 (Pol III δ subunit). In this way, we propose that the C. violaceum δ subunit can act in DH10B in the translesion synthesis using Pol IV in a RecA independent-manner pathway. In growth curve assays other four clones (PLE1G, PLE7B, PLE10B and PLE12H) were able to complement the function at the dose 5 J/m2 and in mutagenicity assays PLE7B, PLE10B and PLE12H showed frequencies of mutation with significant differences upon the control (DH10B), demonstrating that in some way they are involved with the stress response in C. violaceum. These clones appear to be interrelated, probably regulated by a messenger molecule (eg., nucleotide c-di-GMP) and/or global regulatory molecule (eg., σS subunit of RNA polymerase).The results obtained contribute for a better genetic knowledge of this specie and its response mechanisms to environmental stress.
Resumo:
Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.
Resumo:
Smart structures and systems have the main purpose to mimic living organisms, which are essentially characterized by an autoregulatory behavior. Therefore, this kind of structure has adaptive characteristics with stimulus-response mechanisms. The term adaptive structure has been used to identify structural systems that are capable of changing their geometry or physical properties with the purpose of performing a specific task. In this work, a sliding mode controller with fuzzy inference is applied for active vibration control in an SMA two-bar truss. In order to obtain a simpler controller, a polynomial model is used in the control law, while a more sophisticated version, which presents close agreement with experimental data, is applied to describe the SMA behavior of the structural elements. This system has a rich dynamic response and can easily reach a chaotic behavior even at moderate loads and frequencies. Therefore, this approach has the advantage of not only obtaining a simpler control law, but also allows its robustness be evidenced. Numerical simulations are carried out in order to demonstrate the control system performance.
Resumo:
The sequencing of the genome of Chromobacterium violaceum identified one single circular chromosome of 4.8 Mb, in which approximately 40% of the founded ORFs are classified as hypothetical conserved or hypothetical. Some genic regions of biotechnological and biological interest had been characterized, e. g., environmental detoxification and DNA repair genes, respectively. Given this fact, the aim of this work was to identify genes of C. violaceum related to stress response, as the ones involved with mechanisms of DNA repair and/or genomic integrity maintenance. For this, a genomic library of C. violaceum was built in Escherichia coli strain DH10B (RecA-), in which clones were tested to UVC resistance, resulting in five candidates clones. In the PLH6A clone were identified four ORFs (CV_3721 to 3724). Two ORFs, CV_3722 and CV_3724, were subcloned and a synergic complementation activity was observed. The occurrence of an operon was confirmed using cDNA from C. violaceum in a RT-PCR assay. Further, it was observed the induction of the operon after the treatment with UVC. Thus, this operon was related to the stress response in C. violaceum. The mutagenesis assay with rifampicin after the treatment with UVC light showed high frequency of mutagenicity for the ORF CV_3722 (Pol III δ subunit). In this way, we propose that the C. violaceum δ subunit can act in DH10B in the translesion synthesis using Pol IV in a RecA independent-manner pathway. In growth curve assays other four clones (PLE1G, PLE7B, PLE10B and PLE12H) were able to complement the function at the dose 5 J/m2 and in mutagenicity assays PLE7B, PLE10B and PLE12H showed frequencies of mutation with significant differences upon the control (DH10B), demonstrating that in some way they are involved with the stress response in C. violaceum. These clones appear to be interrelated, probably regulated by a messenger molecule (eg., nucleotide c-di-GMP) and/or global regulatory molecule (eg., σS subunit of RNA polymerase).The results obtained contribute for a better genetic knowledge of this specie and its response mechanisms to environmental stress.