2 resultados para documentation generation

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due of industrial informatics several attempts have been done to develop notations and semantics, which are used for classifying and describing different kind of system behavior, particularly in the modeling phase. Such attempts provide the infrastructure to resolve some real problems of engineering and construct practical systems that aim at, mainly, to increase the productivity, quality, and security of the process. Despite the many studies that have attempted to develop friendly methods for industrial controller programming, they are still programmed by conventional trial-and-error methods and, in practice, there is little written documentation on these systems. The ideal solution would be to use a computational environment that allows industrial engineers to implement the system using high-level language and that follows international standards. Accordingly, this work proposes a methodology for plant and control modelling of the discrete event systems that include sequential, parallel and timed operations, using a formalism based on Statecharts, denominated Basic Statechart (BSC). The methodology also permits automatic procedures to validate and implement these systems. To validate our methodology, we presented two case studies with typical examples of the manufacturing sector. The first example shows a sequential control for a tagged machine, which is used to illustrated dependences between the devices of the plant. In the second example, we discuss more than one strategy for controlling a manufacturing cell. The model with no control has 72 states (distinct configurations) and, the model with sequential control generated 20 different states, but they only act in 8 distinct configurations. The model with parallel control generated 210 different states, but these 210 configurations act only in 26 distinct configurations, therefore, one strategy control less restrictive than previous. Lastly, we presented one example for highlight the modular characteristic of our methodology, which it is very important to maintenance of applications. In this example, the sensors for identifying pieces in the plant were removed. So, changes in the control model are needed to transmit the information of the input buffer sensor to the others positions of the cell

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Smart card applications represent a growing market. Usually this kind of application manipulate and store critical information that requires some level of security, such as financial or confidential information. The quality and trustworthiness of smart card software can be improved through a rigorous development process that embraces formal techniques of software engineering. In this work we propose the BSmart method, a specialization of the B formal method dedicated to the development of smart card Java Card applications. The method describes how a Java Card application can be generated from a B refinement process of its formal abstract specification. The development is supported by a set of tools, which automates the generation of some required refinements and the translation to Java Card client (host) and server (applet) applications. With respect to verification, the method development process was formalized and verified in the B method, using the Atelier B tool [Cle12a]. We emphasize that the Java Card application is translated from the last stage of refinement, named implementation. This translation process was specified in ASF+SDF [BKV08], describing the grammar of both languages (SDF) and the code transformations through rewrite rules (ASF). This specification was an important support during the translator development and contributes to the tool documentation. We also emphasize the KitSmart library [Dut06, San12], an essential component of BSmart, containing models of all 93 classes/interfaces of Java Card API 2:2:2, of Java/Java Card data types and machines that can be useful for the specifier, but are not part of the standard Java Card library. In other to validate the method, its tool support and the KitSmart, we developed an electronic passport application following the BSmart method. We believe that the results reached in this work contribute to Java Card development, allowing the generation of complete (client and server components), and less subject to errors, Java Card applications.