22 resultados para distilled spirits
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke
Resumo:
The natural raw materials acquired special importance beside the mineral raw materials with the need for using alternative sources to oil, because they can be used to produce biopolymers. Gelatin, produced from the denaturation of collagen, and starch, an abundant polysaccharide in various plants, are examples of biopolymers which have several technological applications, especially in films. The objective of this work is to produce polymeric bioblends with gelatin and corn starch using two types of gelatin: commercial bovine gelatin and gelatin produced from mechanically separated flesh of tilapia (Oreochromis niloticus). For the extraction of tilapia gelatin 3 distinct pretreatments, followed by extraction in distilled water under heating were performed. The properties of gelatin extracted were similar to bovine gelatin, and the differences can be explained by the difference in extraction processes and sources. Blends of commercial gelatin and starch were produced in an internal mixer from a Haake torque rheometer, to study the behavior of the gelatin mixture with starch, thus, the same compositions were processed by twin screw extrusion, to define the mixing parameters. Subsequently, the extrusion of blends of tilapia gelatin and corn starch was carried out in the same twin screw extruder. The physico-chemical, rheological and morphological properties of the blends with thermoplastic starch and gelatin were studied. It was found that various properties vary linearly with increasing concentration of the components. The blends produced are immiscible, and among the two gelatins, tilapia gelatin showed a better interfacial adhesion with the corn starch. Regarding the morphology, gelatins formed the dispersed phase in all compositions studied, even in compositions rich in starch. Can be concluded that the procedure for tilapia gelatin extraction is feasible and advantageous, and the increasing in its scale to a reactor of 30 liters is possible, with a satisfactory yield. The bioblends of bovine gelatin/corn starch and tilapia gelatin/corn starch were successfully produced, and the processing conditions were appropriate
Resumo:
In this study, was used a very promising technique called of pyrolysis, which can be used for obtaining products with higher added value. From oils and residues, since the contribution of heavier oils and residues has intensified to the world refining industry, due to the growing demand for fuel, for example, liquid hydrocarbons in the range of gasoline and diesel. The catalytic pyrolysis of vacuum residues was performed with the use of a mesoporous material belonging the M41S family, which was discovered in the early 90s by researchers Mobil Oil Corporation, allowing new perspectives in the field of catalysis. One of the most important members of this family is the MCM-41, which has a hexagonal arrangement of mesopores with pore diameters between 2 and 10 nm and a high specific surface area, making it very promising for use as a catalyst in petroleum refining for catalytic cracking, and their mesopores facilitate the access of large hydrocarbon molecules. The addition of aluminum in the structure of MCM-41 increases the acidity of the material, making it more positive for application in the petrochemical industry. The mesoporous material of the type Al-MCM41 (ratio Si / Al = 50) was synthesized by hydrothermal method starting from the silica gel, NaOH and distilled water added to the gel pseudobohemita synthesis. Driver was used as structural CTMABr. Removal of organic driver (CTMABr) was observed by TG / DTG and FTIR, but this material was characterized by XRD, which was observed the formation of the main peaks characteristic of mesoporous materials. The analysis of adsorption / desorption of nitrogen this material textural parameters were determined. The vacuum residues (VR's) that are products of the bottom of the vacuum distillation tower used in this study are different from oil fields (regions of Ceará and Rio de Janeiro). Previously characterized by various techniques such as FTIR, viscosity, density, SARA, elemental analysis and thermogravimetry, which was performed by thermal and catalytic degradation of vacuum residues. The effect of AlMCM-41 was satisfactory, since promoted a decrease in certain ranges of temperature required in the process of conversion of hydrocarbons, but also promoted a decrease in energy required in the process. Thus enabling lower costs related to energy expenditure from degradation during processing of the waste
Resumo:
Mimosa caesalpiniaefolia Benth. is a forest species of the Mimosaceae family, recommended for recovery of degraded areas. The evaluation of vigor by biochemical tests have been an important tool in the control of seed quality programs, and the electrical conductivity and potassium leaching the most efficient in the verifying the physiological potential. The objective, therefore, to adjust the methodology of the electrical conductivity test for seeds of M. caesalpiniaefolia, for then compare the efficiency of this test with the potassium in the evaluation of seed vigor of different lots of seeds M. caesalpiniaefolia. To test the adequacy of the electrical conductivity were used different combinations of temperatures , 25 °C and 30 ºC, number of seeds , 25 and 50, periods of imbibition , 4 , 8 , 12 , 16 and 24 hours , and volumes deionized water, 50 mL and 75mL. For potassium leaching test, which was conducted from the results achieved by the methodology of the adequacy of the electrical conductivity test, to compare the efficiency of both tests , in the classification of seeds at different levels of vigor, and the period 4 hours also evaluated because the potassium leaching test can be more efficient in the shortest time . The best combination obtained in experiment of electrical conductivity is 25 seeds soaked in 50 mL deionized or distilled water for 8 hours at a temperature of 30 ° C. Data were subjected to analysis of variance, the means were compared with each other by F tests and Tukey at 5 % probability, and when necessary polynomial regression analysis was performed. The electrical conductivity test performed at period eight hour proved to be more efficient in the separation of seed lots M. caesalpiniaefolia at different levels of vigor compared to the potassium test
Resumo:
The Caatinga is the predominant vegetation type in semi-arid region of Brazil, where many inhabitants depend on hunting and gathering for survival, obtaining resources for: food and feed, folk medicine, timber production, etc. It‟s the dry ecosystem with highest population density in the world. The early stages of development are the most critical during the life cycle of a flowering plant and they‟re primordial to its establishment in environments exposed to water stress. Information about adjustments to the growth of the species, correlated with their studies of distribution in Seridó oriental potiguar, are an important ecological and economic standpoint, because they provide subsidies for the development of cultivation techniques, to programs of sustainable use and recovery of degraded areas. This thesis aimed to study the initial growth and foliar morphology in plants like Enterolobium contortisiliquum (Vell.) Morong. (tamboril) and Erythrina velutina Mart. ex Benth (mulungu), species of occurrence in the Caatinga, under water stress. After sowing and emergency, the seedlings were exposed to three water regimes: 450 (control), 225 (moderate stress) and 112.5 (severe stress) mm of water slide for 40 days. Seeding occurred in bags of 5 kg and after the establishment of seedlings thinning was carried out leaving a plantlet per bag. At the beginning the waterings occurred daily with distilled water, passing to be on alternate days after thinning. Twenty and forty days after the thinning seedlings collections were held to be done analysis of growth and biomass partition. When compared to the control group, the treatments with water stress showed reduction in the growth of the aerial part, growth of the greater root, number of leaves and leaflets, dry leaf area and total phytomass in both species, but in general, this effect was most marked for E. velutina. Regarding the partition of biomass, there were few changes throughout the experiment. Morphological changes in the leaves as a function of stress were not significant, however, there was a trend, in both species, to produce narrower leaves, that facilitate heat loss to the environment. It has not been possible to establish a positive relationship between inhibition of growth and distribution of species, whereas E. velutina is a species of most common occurrence in Seridó oriental potiguar. In this way, other aspects should be taken into account when studying the adaptation of species the dry environments, such as salinity, presence of heavy metals, wind speed, etc
Resumo:
The subject of this research is the spiritual religious field, connected with the local cultural perspectives. Its basis is the analysis of two spiritual groups settled in Natal/RN: The Spiritual Group Evangelho no Lar and the Spiritual Center Garimpeiros da Luz . These two groups represent a point of convergence of several sectors of this religion, either through its insertion in the local sphere or in contact to nationally influent leaders, like the mediums Francisco Cândido Xavier and Divaldo Pereira Franco. Then, it aims to reach the potiguar singularities in their spiritualism approaches, looking for an analyses to possible connections between local values and themes from the spiritualism largely developed in Brazil. So, its objective is to act in the scope of influence, references, representations and adaptive practices in a local context, and they signalize special practices . The approaches until now developed refer only to the living of a Brazilian spiritualism, perfectly developed in contact with the catholic substrate, but there s still a gap about the local observation, with its peculiarities, which its research aims to disclosure. The option for a qualitative approach, in perfect relationship with the nature of the questions which were made was considered as an appropriate way to guide the study. To reach this, it will be made an ethnography of the studied groups, not only in the use of open interviews with its members but also in the contact and observation of its religious behavior, for example: meeting for studies of the doctrine, mediunic meetings, public lectures, helping the public in general. As results of this research we can point to the delimitation of local cultural references, which are undeniable, in relation to the identification of RN personalities who are considered coordinators or active spirits in the work performed by the groups. Thus, Auta de Souza, poetess and woman of great religiosity, Augusto Severo de Albuquerque Maranhão, martyr of the aeronautics, Father João Maria, object of popular devotion and Abdias Antônio de Oliveira, ex president of the Spiritual Federation of RN, present themselves as spiritual beings who lead the adaptability to the local context. In such a context, we have to point out the work of mediums, who, having a specific charisma, interacted with the groups in the establishment of these cultural bridges already made in their own contexts (national level), through the work equally possible to be locally reproduced. This and other facts, point out to perspectives of cultural circularity , including referring to a greater linking to sub layers in a true zone that converges and has circulation between an erudite spiritualism with another one, turned to the incorporation of local and popular elements
Resumo:
The aim of this study was investigate the consolidation of the biodiesel fuel used in (a) engines of urban and intercity bus companies, (b) a stationary engine. It was necessary to investigate and analyze, technologically, if the biodiesel fuels were presenting troubleshooting relative to wear of parts lied to fuel and to evaluate the consumption fluctuations of this fuel. The urban and intercity bus companies, localized in Natal, Rio Grande do Norte state, Brazil, had 41 and 12 vehicles, respectively. It were analyzed datasheet of each one vehicle during three years, since 2008 until 2010 and were interviewed the management of the maintenance team of bus companies relative to aspects concerning the substitution of the diesel fuel by the B5 biodiesel. The second aim of this study was visually inspect the wear of the parts directly lied to combustion process. For this reason, it was investigated a stationary engine, manufactured by Branco BD5, 5 HP of power, fueled by (a) diesel, (b) biodiesel B5, (c) biodiesel B20 and (d) diesel or biodiesel, both contaminated by distilled water. In this engine, its power utilizing biodiesel B5 versus diesel was lower about 5.2% and, in the investigated case of B20 versus diesel, it was lower around 11.5%
Resumo:
Fuel is a material used to produce heat or power by burning, and lubricity is the capacity for reducing friction. The aim of this work is evaluate the lubricity of eight fossil and renewable fuels used in Diesel engines, by means of a HFRR tester, following the ASTM D 6079-04 Standard. In this conception, a sphere of AISI 52100 steel (diameter of 6,000,05 mm, Ra 0,050,005 μm, E = 210 GPa, HRC 624, HV0,2 63147) is submitted to a reciprocating motion under a normal load of 2 N and 50 Hz frequency to promote a wear track length of 1.10.1mm in a plan disc of AISI 52100 steel (HV0,05 18410, Ra 0,020,005 μm). The testing extent time was 75 minutes, 225,000 cycles. Each one test was repeated six times to furnish the results, by means of intrinsic signatures from the signals of the lubricant film percentage, friction coefficient, contact heating, Sound Pressure Level, SPL [dB]. These signal signatures were obtained by two thermocouples and a portable decibelmeter coupled to a data acquisition system and to the HFRR system. The wettability of droplet of the diesel fuel in thermal equilibrium on a horizontal surface of a virgin plan disc of 52100 steel, Ra 0,02 0,005 μm, were measured by its contact angle of 7,0 3,5o, while the results obtained for the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of soybean oil were, respectively, 7,5 3,5o, 13,5 3,5o e 19,0 1,0o; for the distilled water, 78,0 6,0o; the biodiesel B5, B20 and B100 blends originated by the ethylic transesterification of sunflower oil were, respectively, 7,0 4,0o, 8,5 4,5o e 19,5 2,5o. Different thickness of lubricant film were formed and measured by their percentage by means of the contact resistance technique, suggesting several regimes, since the boundary until the hydrodynamic lubrication. All oils analyzed in this study promoted the ball wear scars with diameters smaller than 400 μm. The lowest values were observed in the scar balls lubricated by mixtures B100, B20 and B5 of sunflower and B20 and B5 of soybean oils (WSD < 215 μm)
Resumo:
The production of petroleum is frequently accomplished with great volumes of water, that it is carried of the underground with the oil. It is a challenge of the present century the development of technologies that allow the use of waste water for purposes that consume great amounts of water and don't demand as rigid as the one of the drinking water requirements. The solar distillation has been configuring as an alternative of clean technology for desalination of brine and saline. Besides causing the minimum possible damage to the environment, it takes advantage of an abundant and free energy source: the solar energy. That study aims to develop a Solar Distillator for treatment of the produced water of the oil wells, to obtain an efluent to use in agriculture and vapor generation. The methodology for collection, conservation and analysis of the physical-chemical parameters obeyed the norms in APHA (1995). The sampling was of the composed type. Experiments were accomplished in the solar distillation pilot and simulation in thermostatic bathing. The operation was in batch system and for periods of 4, 6 and 12 h. The developed Distillator is of the type simple effect of two waters. It was still tested two inclination angles for covering; 20º and 45º. The Distillator presented minimum of 2,85 L/m2d revenues and maximum of 7,14 L/m2d. The removals of salts were great than 98%. The removal of TOC in the simulation was great than 90%. In agreement with the data of energy and mass balance, it was verified that the developed solar Distillator presented compatible revenues with those found in literature for similar types. It can be inferred that the obtained distilled water assists to the requirements CONAMA in almost all the points and could be used for irrigation of cultures such as cotton and mamona. As the distilled water has characteristics of fresh water it can be used in the generation of vapor
Resumo:
Solid substrate cultivation (SSC) has become an efficient alternative towards rational use of agro industrial wastes and production of value-added products, mainly in developing countries. This work presents the production and functional application results of phenolic extracts obtained by solid substrate cultivation of pineapple (Ananas comosus L.) and guava (Psidium guajava L.) residues associated to soy flour and bioprocessed by Rhizopus oligosporus fungus. Two experimental groups were tested: (1) 9g of fruit residue and 1g of soy flour (A9 or G9); (2) 5g of fruit residue and 5g of soy flour (A5 or G5). After SSC, 100ml of distilled water was added to each Erlenmeyer flask containing 10g of bioprocessed material in order to obtain the phenolic extracts. Samples were taken every two days for total phenolic concentration (TPC) and antioxidant capacity evaluation by DPPH test during 12-day cultivation. The 2-day and 10-d ay extracts were selected and concentrated by ebullition until 1/10 of original volume was reached. After that, both non-concentrated and concentrated extracts were evaluated for their antimicrobial activity against Staphylococcus aureus and Salmonella enterica and a-amylase inhibitory capacity. It was observed an inverse relationship between total phenolic concentration (TPC) and antioxidant capacity during the cultivation. Besides that, the concentrated pineapple samples after two days were able to inhibit both pathogens tested, especially S. aureus. Guava concentrated extracts after 2 days showed expressive inhibition against S. enterica, but negative results against S. aureus growth. When it comes to a-amylase inhibition, A9 extracts after 2 days, both concentrated or not, completely inhibited enzyme activity. Similar behavior was observed for G9 samples, but only for concentrated samples. It was shown that concentration by ebullition positively affected the enzymatic inhibition of G9 and A9 samples, but on the other side, decreased antiamylase activity of A5 and G5 samples
Resumo:
The constant search for biodegradable materials for applications in several fields shows that carnauba wax can be a viable alternative in the manufacturing of biolubricants. Carnauba wax is the unique among the natural waxes to have a combination of properties of great importance. In previous studies it was verified the presence of metals in wax composition that can harm the oxidative stability of lubricants. Considering these factors, it was decided to develop a research to evaluate iron removal from carnauba wax, using microemulsion systems (Me) and perform the optimization of parameters, such as: extraction pH, temperature, extraction time, among others. Iron concentration was determined by atomic absorption and, to perform this analysis, sample digestion in microwave oven was used, showing that this process was very efficient. It was performed some analysis in order to characterize the wax sample, such as: attenuated total reflectance infrared spectroscopy (ATR-IR), thermogravimetry (TG), differential scanning calorimetry (DSC), energy dispersive X-ray fluorescence (EDXRF), scanning electron microscopy (SEM) and melting point (FP). The microemulsion systems were composed by: coconut oil as surfactant, n-butanol as cosurfactant, kerosene and/or heptanes as oil phase, distilled water as water phase. The pH chosen for this study was 4.5 and the metal extraction was performed in finite experiments. To evaluate Me extraction it was performed a factorial design for systems with heptane and kerosene as oil phase, also investigating the influence of temperature time and wax/Me ratio, that showed an statistically significant answer for iron extraction at 95% confidence level. The best result was obtained at 60°C, 10 hours contact time and 1: 10 wax/Me ratio, in both systems with kerosene and heptanes as oil phase. The best extraction occurred with kerosene as oil phase, with 54% iron removal
Resumo:
This work study of solar distillation feasibility in effluent of petroleum industry: produced water, making possible your reuse for irrigation of oleaginous cultures or fodder crops or in steam generation, as well the transport phenomena involved. The methodology for development of this project was to characterize the effluent to be treated and to accomplish physical and chemical analysis in the distilled, to build distillation equipment, concomitant operation of both equipments and implementation of data processing and economical evaluation. The methodology used for all parameters is outlined in APHA (1998) and sampling of the type compound. The feeding of distillation equipment was performed with treated effluent from UTPF of Guamaré. The temperature was monitored throughout the distillers and during the time of operation. The distillers feed occur, as a rule, for sifon. The distillers were operated by a period of 17 months between July 2007 and February 2009, in which 40 experiments were performed. The radiation and temperature datas were acquired in the INPE s site and the temperature inside of the distillers was registered by DATALOGGER Novus. The rates of condensation (mL / min) were determined by measuring of the flow in a graduate test tube of 10 mL and a chronometer. We used two simple solar effect distillers of passive type with different angles in coverage: 20 ° and 45 °. The results obtained in this study and the relevant discussions are divided into six topics: sample characterization and quality of distilled; construction of distillers; operation (data, temperature profile), climatic aspects, treatment of data and economical analysis. Results obtained can be inferred that: the energy loss by the adoption of vessel glass was not significant, however, complicates the logistics of maintenance the equipment on a large scale. In the other hand, the surface of the tub with a glass shield on the equipment deterioration, both devices showed similar performance, so there is not justified for use of equipment 450. With regard to the climatological study it was verified that the Natal city presents monthly medium radiation varying in a range between 350 and 600 W/m2, and medium of wind speed of 5 m / s. The medium humidity is around 70% and rainfall is very small. The regime of the system is transient and although it has been treated as a stationary system shows that the model accurately represents the distillers system's 20 degrees. The quality of the distilled with regard to the parameters evaluated in this study is consistent with the Class 3 waters of CONAMA (Resolution 357). Therefore we can conclude that solar distillation has viability for treat oilfield produced water when considered the technical and environmental aspects, although it is not economically viable
Resumo:
The diesel combustion form sulfur oxides that can be discharged into the atmosphere as particulates and primary pollutants, SO2and SO3, causing great damage to the environment and to human health. These products can be transformed into acids in the combustion chamber, causing damage to the engines. The worldwide concern with a clean and healthy environment has led to more restrictive laws and regulations regulating the emission levels of pollutants in the air, establishing sulfur levels increasingly low on fuels. The conventional methods for sulfur removal from diesel are expensive and do not produce a zero-level sulfur fuel. This work aims to develop new methods of removing sulfur from commercial diesel using surfactants and microemulsion systems. Its main purpose is to create new technologies and add economic viability to the process. First, a preliminary study using as extracting agent a Winsor I microemulsion system with dodecyl ammonium chloride (DDACl) and nonyl phenol ethoxylated (RNX95) as surfactant was performed to choose the surfactant. The RNX95 was chosen to be used as surfactant in microemulsioned systems for adsorbent surface modification and as an extracting agent in liquid-liquid extraction. Vermiculite was evaluated as adsorbent. The microemulsion systems applied for vermiculite surface modification were composed by RNX95 (surfactant), n-butanol (cosurfactant), n-hexane (oil phase), and different aqueous phases, including: distilled water (aqueous phase),20ppm CaCl2solution, and 1500ppm CaCl2solution. Batch and column adsorption tests were carried out to estimate the ability of vermiculite to adsorb sulfur from diesel. It was used in the experiments a commercial diesel fuel with 1,233ppm initial sulfur concentration. The batch experiments were performed according to a factorial design (23). Two experimental sets were accomplished: the first one applying 1:2 vermiculite to diesel ratio and the second one using 1:5 vermiculite to diesel ratio. It was evaluated the effects of temperature (25°C and 60°C), concentration of CaCl2in the aqueous phase (20ppm and 1500ppm), and vermiculite granule size (65 and 100 mesh). The experimental response was the ability of vermiculite to adsorb sulfur. The best results for both 1:5 and 1:2 ratios were obtained using 60°C, 1500ppm CaCl2solution, and 65 mesh. The best adsorption capacities for 1:5 ratio and for 1:2 ratio were 4.24 mg sulfur/g adsorbent and 2.87 mg sulfur/g adsorbent, respectively. It was verified that the most significant factor was the concentration of the CaCl2 solution. Liquid-liquid extraction experiments were performed in two and six steps using the same surfactant to diesel ratio. It was obtained 46.8% sulfur removal in two-step experiment and 73.15% in six-step one. An alternative study, for comparison purposes, was made using bentonite and diatomite asadsorbents. The batch experiments were done using microemulsion systems with the same aqueous phases evaluated in vermiculite study and also 20ppm and 1500 ppm BaCl2 solutions. For bentonite, the best adsorption capacity was 7.53mg sulfur/g adsorbent with distilled water as aqueous phase of the microemulsion system and for diatomite the best result was 17.04 mg sulfur/g adsorbent using a 20ppm CaCl2solution. The accomplishment of this study allowed us to conclude that, among the alternatives tested, the adsorption process using adsorbents modified by microemulsion systems was considered the best process for sulfur removal from diesel fuel. The optimization and scale upof the process constitutes a viable alternative to achieve the needs of the market
Resumo:
An interesting development in surfactants science and technology is their application as corrosion inhibitors, since they act as protective films over anodic and cathodic surfaces. This work aims to investigate the efficiency of saponified coconut oil (SCO) as corrosion inhibitor and of microemulsified system (SCO + butanol + kerosene oil + distilled water), in saline medium, using an adapted instrumented cell, via techniques involving linear polarization resistance (LPR) and mass loss coupons (MLC). For this, curves of efficiency versus SCO concentration (ranging between 0 and 75 ppm) have been constructed. According to the obtained results, the following efficiency levels were reached with OCS: 98% at a 75 ppm concentration via the LPR method and 95% at 75 ppm via the MLC method. The microemulsified system, for a concentration of 15 ppm of SCO, obtained maximum inhibition of 97% (LPR) and 93% (MLC). These data indicate that it is possible to optimize the use of SCO in similar applications. Previous works have demonstrated that maximal efficiencies below 90% are attained, typically 65% as free molecules and 77% in microemulsified medium, via the LPR method in a different type of cell. Therefore, it can be concluded that the adapted instrumented cell (in those used methods) showed to be an important tool in this kind of study and the SCO was shown effective in the inhibition of the metal
Resumo:
Due to the need of increasing production in reservoirs that are going through production decline, methods of advanced recovery have frequently been used in the last years, as the use of conventional methods has not been successful in solving the problem of oil drifting. In this work, the efficiency of different microemulsionated systems in the flow of oil from cores from Assu and Botucatu formations. Regarding drifting tests, cores were calcinated at a temperature of 1000°C, for 18 hours, with the aim of eliminating any organic compound present in it, increasing the resultant permeability. Following, the cores were isolated with resin, resulting in test specimens with the following dimensions: 3.8 cm of diameter and 8.7 cm of length. Cores were saturated with brine, composed of aqueous 2 wt % KCl, and oil from Guamaré treatment station (Petrobras/RN). A pressure of 20 psi was used in all tests. After core saturation, brine was injected again, followed by oil at constant flow rate. The system S3 - surfactant (anionic surfactant of short chain), isoamillic alcohol, pine oil, and water - presented the best drift efficiency, 81.18%, while the system S1E commercial surfactant, ethyl alcohol, pine oil, and distilled water presented low drift efficiency, 44,68%