21 resultados para discrete wavelet transforms

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The power system stabilizers are used to suppress low-frequency electromechanical oscillations and improve the synchronous generator stability limits. This master thesis proposes a wavelet-based power system stabilizer, composed of a new methodology for extraction and compensation of electromechanical oscillations in electrical power systems based on the scaling coefficient energy of the maximal overlap discrete wavelet transform in order to reduce the effects of delay and attenuation of conventional power system stabilizers. Moreover, the wavelet coefficient energy is used for electric oscillation detection and triggering the power system stabilizer only in fault situations. The performance of the proposed power system stabilizer was assessed with experimental results and comparison with the conventional power system stabilizer. Furthermore, the effects of the mother wavelet were also evaluated in this work

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The goal of the power monitoring in electrical power systems is to promote the reliablility as well as the quality of electrical power.Therefore, this dissertation proposes a new theory of power based on wavelet transform for real-time estimation of RMS voltages and currents, and some power amounts, such as active power, reactive power, apparent power, and power factor. The appropriate estimation the of RMS and power values is important for many applications, such as: design and analysis of power systems, compensation devices for improving power quality, and instruments for energy measuring. Simulation and experimental results obtained through the proposed MaximalOverlap Discrete Wavelet Transform-based method were compared with the IEEE Standard 1459-2010 and the commercial oscilloscope, respectively, presenting equivalent results. The proposed method presented good performance for compact mother wavelet, which is in accordance with real-time applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Post dispatch analysis of signals obtained from digital disturbances registers provide important information to identify and classify disturbances in systems, looking for a more efficient management of the supply. In order to enhance the task of identifying and classifying the disturbances - providing an automatic assessment - techniques of digital signal processing can be helpful. The Wavelet Transform has become a very efficient tool for the analysis of voltage or current signals, obtained immediately after disturbance s occurrences in the network. This work presents a methodology based on the Discrete Wavelet Transform to implement this process. It uses a comparison between distribution curves of signals energy, with and without disturbance. This is done for different resolution levels of its decomposition in order to obtain descriptors that permit its classification, using artificial neural networks

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work an algorithm for fault location is proposed. It contains the following functions: fault detection, fault classification and fault location. Mathematical Morphology is used to process currents obtained in the monitored terminals. Unlike Fourier and Wavelet transforms that are usually applied to fault location, the Mathematical Morphology is a non-linear operation that uses only basic operation (sum, subtraction, maximum and minimum). Thus, Mathematical Morphology is computationally very efficient. For detection and classification functions, the Morphological Wavelet was used. On fault location module the Multiresolution Morphological Gradient was used to detect the traveling waves and their polarities. Hence, recorded the arrival in the two first traveling waves incident at the measured terminal and knowing the velocity of propagation, pinpoint the fault location can be estimated. The algorithm was applied in a 440 kV power transmission system, simulated on ATP. Several fault conditions where studied and the following parameters were evaluated: fault location, fault type, fault resistance, fault inception angle, noise level and sampling rate. The results show that the application of Mathematical Morphology in faults location is very promising

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Originally aimed at operational objectives, the continuous measurement of well bottomhole pressure and temperature, recorded by permanent downhole gauges (PDG), finds vast applicability in reservoir management. It contributes for the monitoring of well performance and makes it possible to estimate reservoir parameters on the long term. However, notwithstanding its unquestionable value, data from PDG is characterized by a large noise content. Moreover, the presence of outliers within valid signal measurements seems to be a major problem as well. In this work, the initial treatment of PDG signals is addressed, based on curve smoothing, self-organizing maps and the discrete wavelet transform. Additionally, a system based on the coupling of fuzzy clustering with feed-forward neural networks is proposed for transient detection. The obtained results were considered quite satisfactory for offshore wells and matched real requisites for utilization

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work proposes a model to investigate the use of a cylindrical antenna used in the thermal method of recovering through electromagnetic radiation of high-viscosity oil. The antenna has a simple geometry, adapted dipole type, and it can be modelled by using Maxwell s equation. The wavelet transforms are used as basis functions and applied in conjunction with the method of moments to obtain the current distribution in the antenna. The electric field, power and temperature distribution are carefully calculated for the analysis of the antenna as electromagnetic heating. The energy performance is analyzed based on thermo-fluid dynamic simulations at field scale, and through the adaptation in the Steam Thermal and Advanced Processes Reservoir Simulator (STARS) by Computer Modelling Group (CMG). The model proposed and the numerical results obtained are stable and presented good agreement with the results reported in the specialized literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, spoke about the importance of image compression for the industry, it is known that processing and image storage is always a challenge in petrobrás to optimize the storage time and store a maximum number of images and data. We present an interactive system for processing and storing images in the wavelet domain and an interface for digital image processing. The proposal is based on the Peano function and wavelet transform in 1D. The storage system aims to optimize the computational space, both for storage and for transmission of images. Being necessary to the application of the Peano function to linearize the images and the 1D wavelet transform to decompose it. These applications allow you to extract relevant information for the storage of an image with a lower computational cost and with a very small margin of error when comparing the images, original and processed, ie, there is little loss of quality when applying the processing system presented . The results obtained from the information extracted from the images are displayed in a graphical interface. It is through the graphical user interface that the user uses the files to view and analyze the results of the programs directly on the computer screen without the worry of dealing with the source code. The graphical user interface, programs for image processing via Peano Function and Wavelet Transform 1D, were developed in Java language, allowing a direct exchange of information between them and the user

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The automatic speech recognition by machine has been the target of researchers in the past five decades. In this period have been numerous advances, such as in the field of recognition of isolated words (commands), which has very high rates of recognition, currently. However, we are still far from developing a system that could have a performance similar to the human being (automatic continuous speech recognition). One of the great challenges of searches for continuous speech recognition is the large amount of pattern. The modern languages such as English, French, Spanish and Portuguese have approximately 500,000 words or patterns to be identified. The purpose of this study is to use smaller units than the word such as phonemes, syllables and difones units as the basis for the speech recognition, aiming to recognize any words without necessarily using them. The main goal is to reduce the restriction imposed by the excessive amount of patterns. In order to validate this proposal, the system was tested in the isolated word recognition in dependent-case. The phonemes characteristics of the Brazil s Portuguese language were used to developed the hierarchy decision system. These decisions are made through the use of neural networks SVM (Support Vector Machines). The main speech features used were obtained from the Wavelet Packet Transform. The descriptors MFCC (Mel-Frequency Cepstral Coefficient) are also used in this work. It was concluded that the method proposed in this work, showed good results in the steps of recognition of vowels, consonants (syllables) and words when compared with other existing methods in literature

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In last decades, neural networks have been established as a major tool for the identification of nonlinear systems. Among the various types of networks used in identification, one that can be highlighted is the wavelet neural network (WNN). This network combines the characteristics of wavelet multiresolution theory with learning ability and generalization of neural networks usually, providing more accurate models than those ones obtained by traditional networks. An extension of WNN networks is to combine the neuro-fuzzy ANFIS (Adaptive Network Based Fuzzy Inference System) structure with wavelets, leading to generate the Fuzzy Wavelet Neural Network - FWNN structure. This network is very similar to ANFIS networks, with the difference that traditional polynomials present in consequent of this network are replaced by WNN networks. This paper proposes the identification of nonlinear dynamical systems from a network FWNN modified. In the proposed structure, functions only wavelets are used in the consequent. Thus, it is possible to obtain a simplification of the structure, reducing the number of adjustable parameters of the network. To evaluate the performance of network FWNN with this modification, an analysis of network performance is made, verifying advantages, disadvantages and cost effectiveness when compared to other existing FWNN structures in literature. The evaluations are carried out via the identification of two simulated systems traditionally found in the literature and a real nonlinear system, consisting of a nonlinear multi section tank. Finally, the network is used to infer values of temperature and humidity inside of a neonatal incubator. The execution of such analyzes is based on various criteria, like: mean squared error, number of training epochs, number of adjustable parameters, the variation of the mean square error, among others. The results found show the generalization ability of the modified structure, despite the simplification performed

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coding is an efficient technique to overcome the multipath fading effects, which are characterized by fluctuations in the intensity of the transmitted signals over wireless channels. Since the wavelet symbols are non-equiprobable, modulation schemes play a significant role in the overall performance of wavelet systems. Thus the development of an efficient design method is crucial to obtain modulation schemes suitable for wavelet systems, principally when these systems employ wavelet encoding matrixes of great dimensions. In this work, it is proposed a design methodology to obtain sub-optimum modulation schemes for wavelet systems over Rayleigh fading channels. In this context, novels signal constellations and quantization schemes are obtained via genetic algorithm and mathematical tools. Numerical results obtained from simulations show that the wavelet-coded systems derived here have very good performance characteristics over fading channels