2 resultados para dilatation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
The marine tucuxi, Sotalia guianensis, is one of the smallest known cetaceans, has coastal habits, and occurs from Hondures to Santa Catarina, in southern Brazil. The objective of this dissertation was to describe diving behavior of the marine tucuxi in three age classes and to analyze the cardiac capacity to dive through the examination of hearts of stranded specimens. Observations were made from October 2004 to November 2005 from a vantage point, in Curral Bay at Pipa beach-RN. We used Ad Libitum sampling and All occurrences to record the behaviors. The diving was characterized by the total exposition of the tail fluke for a few seconds, in 90° or 45° angles. Were recorded 131 dives in three behavioral contexts: foraging, traveling and socialization. The difference between juveniles and adults in dive time and fluke out at 45° or 90° to search and/or capture prey is probably influenced by the strategy used and ability to capture the prey. The frequency of fluke out at 90° for foraging in adults may be related to increased physiological efficiency of adults in comparison to juveniles. However, in the context of travel and socialization the dive time and fluke out were independent between the age classes. Dive in calves were frequent during socialization (play behavior) and traveling. This, associated with synchronic calve-adult diving suggests that a relationship of these behaviors and the acquisition of experience and foraging skills. As observed in other cetaceans, the heart (n=12) of the estuarine dolphin is broad and presents long ventricles which form a round apex. The right ventricle is long and narrow. The degree of dilatation of the aortic bulb may support the heart during diastole. The characteristic morphology of the heart and short dive duration < 2 min and depth ranged from 10m in the estuarine dolphin, can be likely at physiological adaptation for diving, typical de dolphins with coastal habits. The limitation of diving time in this specie may be influenced by anatomical and physiological restrictions
Resumo:
This dissertation focuses on rock thermal conductivity and its correlations with petrographic, textural, and geochemical aspects, especially in granite rocks. It aims at demonstrating the relations of these variables in an attempt to enlighten the behavior of thermal effect on rocks. Results can be useful for several applications, such as understanding and conferring regional thermal flow results, predicting the behavior of thermal effect on rocks based upon macroscopic evaluation (texture and mineralogy), in the building construction field in order to provide more precise information on data refinement on thermal properties emphasizing a rocky material thermal conductivity, and especially in the dimension stone industry in order to open a discussion on the use of these variables as a new technological parameter directly related to thermal comfort. Thermal conductivity data were obtained by using Anter Corporation s QuicklineTM -30 a thermal property measuring equipment. Measurements were conducted at temperatures ranging between 25 to 38 OC in samples with 2cm in length and an area of at least 6cm of diameter. As to petrography data, results demonstrated good correlations with quartz and mafics. Linear correlation between mineralogy and thermal conductivity revealed a positive relation of a quartz percentage increase in relation to a thermal conductivity increase and its decrease with mafic minerals increase. As to feldspates (K-feldspate and plagioclase) they show dispersion. Quartz relation gets more evident when compared to sample sets with >20% and <20%. Sets with more than 20% quartz (sienogranites, monzogranites, granodiorites, etc.), exhibit to a great extent conductivity values which vary from 2,5 W/mK and the set with less than 20% (sienites, monzonites, gabbros, diorites, etc.) have an average thermal conductivity below 2,5 W/mK. As to textures it has been verified that rocks considered thick/porphyry demonstrated in general better correlations when compared to rocks considered thin/medium. In the case of quartz, thick rocks/porphyry showed greater correlation factors when compared to the thin/medium ones. As to feldspates (K-feldspate and plagioclase) again there was dispersion. As to mafics, both thick/porphyry and thin/medium showed negative correlations with correlation factor smaller than those obtained in relation to the quartz. As to rocks related to the Streckeisen s QAP diagram (1976), they tend to fall from alcali-feldspates granites to tonalites, and from sienites to gabbros, diorites, etc. Thermal conductivity data correlation with geochemistry confirmed to a great extent mineralogy results. It has been seen that correlation is linear if there is any. Such behavior could be seen especially with the SiO2. In this case similar correlation can be observed with the quartz, that is, thermal conductivity increases as SiO2 is incremented. Another aspect observed is that basic to intermediate rocks presented values always below 2,5 W/mK, a similar behavior to that observed in rocks with quartz <20%. Acid rocks presented values above 2,5 W/mK, a similar behavior to that observed in rocks with quartz >20% (granites). For all the other cases, correlation factors are always low and present opposite behavior to Fe2O3, CaO, MgO, and TiO2. As to Al2O3, K2O, and Na2O results are not conclusive and are statistically disperse. Thermal property knowledge especially thermal conductivity and its application in the building construction field appeared to be very satisfactory for it involves both technological and thermal comfort aspects, which favored in all cases fast, cheap, and precise results. The relation between thermal conductivity and linear thermal dilatation have also shown satisfactory results especially when it comes to the quartz role as a common, determining phase between the two variables. Thermal conductivity studies together with rocky material density can function as an additional tool for choosing materials when considering structural calculation aspects and thermal comfort, for in the dimension stone case there is a small density variation in relation to a thermal conductivity considerable variation