2 resultados para depth of closure

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The longshore sediment transport (LST) is determinant for the occurrence of morphological changes in coastal environments. Understanding their movement mechanisms and transport is an essential source of information for the project design and coastal management plans. This study aims to characterize, initially, the active hydrodynamic circulation in the study area, comprised of four beach sectors from the south coast of Natal, assessing the average annual LST obtained through three proven equations (CERC, Kamphuis and Bayram et al.), defining the best formulation for the study area in question, and analyze the seasonal variability and the decadal transport evolution. The coastal area selected for this work constitutes one of the main tourist corridors in the city, but has suffered serious damage resulting from associated effects of hydrodynamic forcings and their disorderly occupation. As a tool was used the Coastal Modelling System of Brazil (SMC-Brazil), which presents integrated a series of numerical models and a database, properly calibrated and validated for use in developing projects along the Brazilian coastline. The LST rates were obtained for 15 beach profiles distributed throughout the study area. Their extensions take into account the depth of closure calculated by Harllermeier equation, and regarding the physical properties of the sediment, typical values of sandy beaches were adopted, except for the average diameter, which was calculated through an optimization algorithm based on equilibrium profile formulation proposed by Dean. Overall, the results showed an intensification of hydrodynamic forcings under extreme sea wave conditions, especially along the headlands exist in the region. Among the analyzed equations, Bayram et al. was the most suitable for this type of application, with a predominant transport in the south-north direction and the highest rates within the order of 700.000 m3 /year to 2.000.000 m3 /year. The seasonal analysis also indicated a longitudinal transport predominance in the south to north, with the highest rates associated with the fall and winter seasons. In these periods are observed erosive beach states, which indicate a direct relationship between the sediment dynamics and the occurrence of more energetic sea states. Regarding the decadal evolution of transportation, it was found a decrease in transport rate from the 50’s to the 70’s, followed by an increase until the 2000’s, coinciding with the beginning of urbanization process in some stretches of the studied coastline.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work, AISI 1010 steel samples were plasma nitrided into 20% N 2 100 Pa and 400 Pa for N 2 and H 2 , respectively), temperatures of 500 and 580 °C, during 2 h. Three different procedures for cooling were accomplished after nitriding. In the first procedure the cooling occurred naturally, that is, the sample was kept on substrate holder. In the second one the sample was pulled off and cooling in a cold surface. Finally, in the third cooling process the sample was pulled off the substrate holder down into special reservoir filled with oil held at ambient temperature. The properties of the AISI 1010 steel samples were characterized by optical and electron microscopy, X-ray diffraction, Mössbauer spectroscopy and microhardness tests. Thermal gradient inside the sample kept on substrate holder during cooling process was measured by three inserted thermocouples at different depths. When samples were cooled rapidly the transformation of ϵ-Fe 2 − 3 N to γ′-Fe 4 N was inhibited. Such effect is indicated by the high concentration of ϵ-Fe compound zone. To get solid state solution of nitrogen in the diffusion zone, instead of precipitates of nitride phases, the cooling rate should be higher than a critical value of about 0.95 °C/s. When this value is reached at any depth of the diffusion zone, two distinct diffusion zones will appear. Temperature gradients were measured inside the samples as a consequence of the plasma treatment. It's suggested the need for standardization of the term “treatment temperature” for plasma treatment because different nitrided layer properties could be reported for the same “treatment temperature”.