2 resultados para density estimation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
In the work reported here we present theoretical and numerical results about a Risk Model with Interest Rate and Proportional Reinsurance based on the article Inequalities for the ruin probability in a controlled discrete-time risk process by Ros ario Romera and Maikol Diasparra (see [5]). Recursive and integral equations as well as upper bounds for the Ruin Probability are given considering three di erent approaches, namely, classical Lundberg inequality, Inductive approach and Martingale approach. Density estimation techniques (non-parametrics) are used to derive upper bounds for the Ruin Probability and the algorithms used in the simulation are presented