3 resultados para denoising

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oil prospecting is one of most complex and important features of oil industry Direct prospecting methods like drilling well logs are very expensive, in consequence indirect methods are preferred. Among the indirect prospecting techniques the seismic imaging is a relevant method. Seismic method is based on artificial seismic waves that are generated, go through the geologic medium suffering diffraction and reflexion and return to the surface where they are recorded and analyzed to construct seismograms. However, the seismogram contains not only actual geologic information, but also noise, and one of the main components of the noise is the ground roll. Noise attenuation is essential for a good geologic interpretation of the seismogram. It is common to study seismograms by using time-frequency transformations that map the seismic signal into a frequency space where it is easier to remove or attenuate noise. After that, data is reconstructed in the original space in such a way that geologic structures are shown in more detail. In addition, the curvelet transform is a new and effective spectral transformation that have been used in the analysis of complex data. In this work, we employ the curvelet transform to represent geologic data using basis functions that are directional in space. This particular basis can represent more effectively two dimensional objects with contours and lines. The curvelet analysis maps real space into frequencies scales and angular sectors in such way that we can distinguish in detail the sub-spaces where is the noise and remove the coefficients corresponding to the undesired data. In this work we develop and apply the denoising analysis to remove the ground roll of seismograms. We apply this technique to a artificial seismogram and to a real one. In both cases we obtain a good noise attenuation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace gases are important to our environment even though their presence comes only by ‘traces’, but their concentrations must be monitored, so any necessary interventions can be done at the right time. There are some lower and upper boundaries which produce nice conditions for our lives and then monitoring trace gases comes as an essential task nowadays to be accomplished by many techniques. One of them is the differential optical absorption spectroscopy (DOAS), which consists mathematically on a regression - the classical method uses least-squares - to retrieve the trace gases concentrations. In order to achieve better results, many works have tried out different techniques instead of the classical approach. Some have tried to preprocess the signals to be analyzed by a denoising procedure - e.g. discrete wavelet transform (DWT). This work presents a semi-empirical study to find out the most suitable DWT family to be used in this denoising. The search seeks among many well-known families the one to better remove the noise, keeping the original signal’s main features, then by decreasing the noise, the residual left after the regression is done decreases too. The analysis take account the wavelet decomposition level, the threshold to be applied on the detail coefficients and how to apply them - hard or soft thresholding. The signals used come from an open and online data base which contains characteristic signals from some trace gases usually studied.