1 resultado para databases and data mining
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (3)
- Abertay Research Collections - Abertay University’s repository (2)
- Academic Archive On-line (Mid Sweden University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (17)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (13)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (10)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (25)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (16)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (11)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (40)
- Brock University, Canada (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (14)
- CentAUR: Central Archive University of Reading - UK (81)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (17)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (29)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (1)
- CUNY Academic Works (3)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (4)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (22)
- Digital Peer Publishing (4)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (8)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (36)
- DRUM (Digital Repository at the University of Maryland) (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (3)
- Instituto Politécnico do Porto, Portugal (37)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (9)
- Massachusetts Institute of Technology (3)
- Memorial University Research Repository (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (5)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (2)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (15)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (2)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (8)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (42)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (14)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (26)
- Universidad de Alicante (10)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (38)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (27)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (3)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (13)
- Université de Lausanne, Switzerland (48)
- Université de Montréal, Canada (3)
- Université Laval Mémoires et thèses électroniques (2)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (36)
- University of Queensland eSpace - Australia (37)
- University of Southampton, United Kingdom (11)
- University of Washington (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Clustering data is a very important task in data mining, image processing and pattern recognition problems. One of the most popular clustering algorithms is the Fuzzy C-Means (FCM). This thesis proposes to implement a new way of calculating the cluster centers in the procedure of FCM algorithm which are called ckMeans, and in some variants of FCM, in particular, here we apply it for those variants that use other distances. The goal of this change is to reduce the number of iterations and processing time of these algorithms without affecting the quality of the partition, or even to improve the number of correct classifications in some cases. Also, we developed an algorithm based on ckMeans to manipulate interval data considering interval membership degrees. This algorithm allows the representation of data without converting interval data into punctual ones, as it happens to other extensions of FCM that deal with interval data. In order to validate the proposed methodologies it was made a comparison between a clustering for ckMeans, K-Means and FCM algorithms (since the algorithm proposed in this paper to calculate the centers is similar to the K-Means) considering three different distances. We used several known databases. In this case, the results of Interval ckMeans were compared with the results of other clustering algorithms when applied to an interval database with minimum and maximum temperature of the month for a given year, referring to 37 cities distributed across continents