5 resultados para cyclic plastic deformation
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
In this paper we developed a prototype for dynamic and quantitative analysis of the hardness of metal surfaces by penetration tests. It consists of a micro-indenter which is driven by a gear system driven by three-rectified. The sample to be tested is placed on a table that contains a load cell that measures the deformation in the sample during the penetration of micro-indenter. With this prototype it is possible to measure the elastic deformation of the material obtained by calculating the depth of penetration in the sample from the difference of turns between the start of load application to the application of the load test and return the indenter until the complete termination of load application. To determine the hardness was used to measure the depth of plastic deformation. We used 7 types of steel trade to test the apparatus. There was a dispersion of less than 10% for five measurements made on each sample and a good agreement with the values of firmness provided by the manufacturers.
Resumo:
The hardness test is thoroughly used in research and evaluation of materials for quality control. However, this test results are subject to uncertainties caused by the process operator in the moment of the mensuration impression diagonals make by the indenter in the sample. With this mind, an automated equipment of hardness mensuration was developed. The hardness value was obtained starting from the mensuration of plastic deformation suffered by the material to a well-known load. The material deformation was calculated through the mensuration of the difference between the progress and retreat of a diamond indenter on the used sample. It was not necessary, therefore, the manual mensuration of the diagonals, decreasing the mistake source caused by the operator. Tension graphs of versus deformation could be analyzed from data obtained by the accomplished analysis, as well as you became possible a complete observation of the whole process. Following, the hardness results calculated by the experimental apparatus were compared with the results calculated by a commercial microhardness machine with the intention of testing its efficiency. All things considered, it became possible the materials hardness mensuration through an automated method, which minimized the mistakes caused by the operator and increased the analysis reliability
Resumo:
This dissertation describes the igneous suites of the Japi granitoid pluton, intrusive in the Paleoproterozoic gneiss-migmatite complex of the eastern domain of the Seridó Belt, northeastern Brazil. Field relations show that the pluton is affected by strong deformation associated to the Brasiliano orogeny (known as the D3 phase) , with a NW-trending extensionalleft-hand senestral shear zone (the Japi Shear Zone, JSZ) bordering the intrusive body to the west. Four plutonic suites are found in the main pluton and as satellyte intrusions, besides Iate pegmatite and pink leucogranites. An alkaline granitoid suite, dominated by syenogranites bearing sodic augite (and subordinate hornblende), define a main elliptical intrusion. In its northern part, this intrusion is made up by concentric sheets, contrasting with a smaller rounded stock to the south. These granites display a pervasive solid-state S>L fabric developed under high T conditions, characterized by plastic deformation of quartz and feldspar. It is especially, developed along the border of the pluton, with inward dips. A regular magmatic layering is present sometimes, parallel to the tectonic foliation. The syntectonic emplacement as regards to the Brasiliano (D3) event is indicated by the common occurrence of dykes and sheets along transtensional or extensional sites of the major structure. Field relations attest to the early emplacement of the alkaline granites as regards to the other suites. A basic-to-intermediate suite occurs as a western satellyte body and occupying the southern tail of the main alkaline pluton. It comprises a wide variety of compositional terms, including primitive gabbros and gabbro-norites, differentiated to monzonitic intermediate facies containing amphibole and biotite as their main mafic phases. These rocks display transitional high-K calc-alkaline to shoshonitic affinities. Porphyritic monzogranite suítes commonly occur as dykes and minor intrusives, isolated or associated with the basic-tointermediate rocks. In the latter case, magma mingling and mixing features attest that these are contemporaneous igneous suites. These granites show K-feldspar phenocrysts and a hornblende+biotite+titanite assemblage, displaying subalkaline/monzonitic geochemical affinities. Both suites exhibit SL magmatic fabrics overprinting or transitional to solid-state D3 deformation related to the JSI. Chemical data clearly show that they are related to different parental magmas. Finally, a microgranite suite occurs along a few topographic ridges paralell to the JSI. It comprises dominantly granodiorites with a mineralogy similar to the one of the porphyritic granitoids. However, discriminant diagrams show their distinct calc-alkaline affinity. The granodiorites display an essencially magmatic fabric, even though an incipient D3 solid-state structure may be developed along the JSI. Intrusion relationships with the previous suites, as well as regards to the D3 structures, point to their Iate emplacement. All these suites are intrusive in a Paleoproterozoic, high-grade gneiss-migmatite complex affected by two previous deformation phases (D1, D2). The fabrics associated with these earlier events are folded and overprinted by the younger D3 structures along the JSZ. The younger deformation is characterized by NE-dipping foliations and N/NE-plunging stretching lineations. In the JSZ northern termination the foliation acquires an ENE orientation, containing a stretching lineation plunging to the south. Symmetric kinematic cri teria developed at this site confirms the transpressional termination of the JSZ, as also shown by orthorrombic quartz c-axis patterns. E-W-trending d extra I shear zones developed in the central part of the JSZ are interpreted as antithetic structures associated to the transtensional deformation along the JSZ. This is consistent with its extensional-transcurrent kinematics and a flat-and-ramp geometry at depth, as shown by gravimetric data. The lateral displacement of the negative residual Bouguer anomalies, as regards to the main outcropping alkaline pluton, may be modelized by other deeper-seated granite bodies. Based on numerical modelling it was possible to infer two distinct intrusion styles for the alkaline pluton. The calculated model values are consistent with an emplacement by sheeting for the northern body, as already suggested by satellyte imagery and field mapping. On the other hand, the results point to a transition towards a diapir-related style associated to the smaller. southern stock. This difference in intrusion styles may relate to intensity variations and transtensional sites of the shear deformation along the JSZ. Trace element and Sr and Nd isotopes of the alkaline granites are compatible with their derivation trom a more basic crustal source, as compared to the presently outcropping highgrade gneisses, with participation (or alternatively dominated by) of an enriched lithospheric mantle component. Like other igneous suites in the Seridó Belt, the high LlL contents and fractionated REE patterns of the basic rocks also point to an enriched mantle as the source for this kind of magmatism. Geochemical and isotope data are compatible with a lower crustal origin for the porphyritic granites. On the basis of the strong control of the JSZ on the emplacement of lower crustal (porphyritic and alkaline granites) or lithospheric mantle (basic rocks, alkaline granites or a component of them) magmas, one may infer a deep root for this structure, bearing an important role in magma extraction, transport and emplacement in the Japi region, eastern domain of the Seridó Belt
Resumo:
From an economic standpoint, the powder metallurgy (P/M) is a technique widely used for the production of small parts. It is possible, through the P/M and prior comminution of solid waste such as ferrous chips, produce highly dense sintered parts and of interest to the automotive, electronics and aerospace industries. However, without prior comminution the chip, the production of bodies with a density equal to theoretical density by conventional sintering techniques require the use of additives or significantly higher temperatures than 1250ºC. An alternative route to the production of sintered bodies with high density compaction from ferrous chips (≤ 850 microns) and solid phase sintering is a compression technique under high pressure (HP). In this work, different compaction pressures to produce a sintered chip of SAE 1050 carbon steel were used. Specifically, the objective was to investigate them, the effect of high pressure compression in the behavior of densification of the sintered samples. Therefore, samples of the chips from the SAE 1050 carbon steel were uniaxially cold compacted at 500 and 2000 MPa, respectively. The green compacts obtained were sintered under carbon atmosphere at 1100 and 1200°C for 90 minutes. The heating rate used was 20°C/min. The starting materials and the sintered bodies were characterized by optical microscopy, SEM, XRD, density measurements (geometric: mass/volume, and pycnometry) and microhardness measurements Vickers and Rockwell hardness. The results showed that the compact produced under 2000 MPa presented relative density values between 93% and 100% of theoretical density and microhardness between 150 HV and 180 HV, respectively. In contrast, compressed under 500 MPa showed a very heterogeneous microstructure, density value below 80% of theoretical density and structural conditions of inadequate specimens for carrying out the hardness and microhardness measurements. The results indicate that use of the high pressure of ferrous chips compression is a promising route to improve the sinterability conditions of this type of material, because in addition to promoting greater compression of the starting material, the external tension acts together with surface tension, functioning as the motive power for sintering process. Additionally, extremely high pressures allow plastic deformation of the material, providing an intimate and extended contact of the particles and eliminating cracks and pores. This tends to reduce the time and / or temperature required for good sintering, avoiding excessive grain growth without the use of additives. Moreover, higher pressures lead to fracture the grains in fragile or ductile materials highly hardened, which provides a starting powder for sintering, thinner, without the risk of contamination present when previous methods are used comminution of the powder.
Resumo:
In this paper we developed a prototype for dynamic and quantitative analysis of the hardness of metal surfaces by penetration tests. It consists of a micro-indenter which is driven by a gear system driven by three-rectified. The sample to be tested is placed on a table that contains a load cell that measures the deformation in the sample during the penetration of micro-indenter. With this prototype it is possible to measure the elastic deformation of the material obtained by calculating the depth of penetration in the sample from the difference of turns between the start of load application to the application of the load test and return the indenter until the complete termination of load application. To determine the hardness was used to measure the depth of plastic deformation. We used 7 types of steel trade to test the apparatus. There was a dispersion of less than 10% for five measurements made on each sample and a good agreement with the values of firmness provided by the manufacturers.