22 resultados para crosslinking reagents

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work was used a plasma torch of non transferred arc with argon as work gas, using a power supply with maximum DC current of 250 A and voltage of 30 V to activate the plasma and keep it switched on. The flame temperature was characterized by optical emission spectroscopy, through Boltzmann-plot-method. The torch has been used like igniter in the aluminothermic reduction of the mixture tantalum oxide and aluminum, seeking to obtain metallic tantalum. In heating of the reagents only one particle will be considered to study interactions between plasma-particle, seeking to determinate its fusion and residence time. The early powders were characterized by laser granulometry, scanning electron microscopy (SEM) and X-ray diffraction analysis. The final product of this reaction was characterized by SEM and X-ray diffraction. Crystallite size was calculated by the Scherrer equation and microdeformation was determined using Willamsom-Hall graph. With Rietveld method was possible to quantify the percentile in weight of the products obtained in the aluminothermic reaction. Semi-quantitative chemical analysis (EDS) confirmed the presence of metallic tantalum and Al2O3 as products of the reduction. As was waited the particle size of the metallic tantalum produced, presents values in nanometric scale due the short cooling time of those particles during the process

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The produced water is a byproduct formed due to production of petroleum and carries with it a high amount of contaminants such as oil particles in suspension, organic compounds and metals. Thus, these latter pollutants are very difficult to treat because of its high solubility in water. The objective of this work is to use and evaluate a microemulsioned system to remove metals ( K , Mg , Ba , Ca , Cr , Mn , Li , Fe ) of synthetic produced water. For the extraction of metals, it was used a pseudoternary diagram containing the following phases: synthetic produced water as the aqueous phase (AP), hexane as organic phase (OP), and a cosurfactant/surfactant ratio equal to four (C/S = 4) as the third phase, where the OCS (saponified coconut oil) was used as surfactant and n-butanol as cosurfactant. The synthetic produced water was prepared in a bench scale and the region of interest in the diagram for the removal of metals was determined by experimental design called. Ten points located in the phase Winsor II were selected in an area with a large amount of water and small amounts of reagents. The samples were analyzed in atomic absorption spectrometer, and the results were evaluated through a statistical assesment, allowing the efficiency analysis of the effects and their interactions. The results showed percentages of extraction above 90% for the metals manganese, iron, chromium, calcium, barium and magnesium, and around 45% for metals lithium and potassium. The optimal point for the simultaneous removal of metals was calculated using statistical artifact multiple response function (MR). This calculation showed that the point of greatest extraction of metals occurs was the J point, with the composition [72% AP, 9% OP, 19% C/S], obtaining a global extraction percentage about 80%. Considering the aspects analyzed, the microemulsioned system has shown itself to be an effective alternative in the extraction of metals on synthetic produced water remediation

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toxoplasmosis is a zoonosis caused by Toxoplasma gondii, a protozoan that has a cosmopolitan geographic distribution and low host specificity. Usually a benign and selflimiting, infection can manifest itself in a severe systemic becoming overwhelming in fetuses and patients with immunosuppression. Domestic fowl are considered one of the most important hosts in the epidemiology of toxoplasmosis, since they are potential sources of infection for humans, in addition to playing the role of important indicators of environmental contamination by oocysts of T. gondii. We studied the prevalence of infection by the protozoan in chickens of different breeding systems mesoregions from the states of Rio Grande do Norte and Paraiba: broilers from commercial farms (200/PB) and free-range chickens of small farms (322/RN and PB). Were standardized IFAT and ELISA techniques for detecting specific antibodies in blood samples of birds, and commercial kit was used to determine the prevalence by IHAT. There was no seropositive reaction by T. gondii in the samples of broilers tested, indicating that the particularities of intensive management limit the chances of infection for these animals. Among the hens, the frequency of IgG anti-T. gondii diagnosed by the techniques of IHAT, IFAT and ELISA, respectively, were 3.73% (12/322), 37.88% (122/322) and 40.37% (130/322), for both young and adult animals. Amongst the seropositive samples by IFAT, 33 (27.05%) were positive at a dilution of 1:16, in 1:32, 31 (25.41%), in 1:64, 24 (19.67%), 15 (12.29%) in 1:128, and 19 presented titer greater than or equal to 1:256 (15.57%). The evaluation of the presence of anti-T. gondii should be careful, and reagents IHAT provided erratic results in this measure for the specie studied. This suggests the need for own standardization of the kit before the use in epidemiological studies in animal species. On the other hand, substantial agreement observed between IFAT and ELISA techniques (Kappa = 0.62) enables these methods as effective methodologies for the diagnosis of toxoplasmosis in chickens. The high prevalence of specific antibodies among poultry in the region studied attempts to the potential risk of transmission of toxoplasmosis to humans

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To aureus α-HL channel, we used the cysteine-scanning mutagenesis technique. Twenty-four mutants were produced from the substitution of a single aminoacid of the primary structure of the α-HL pro this yzed after the incorporation of a mutant channel in planar lipid bilayer membranes. The modified proteins were studied in the absence and presence of watersoluble specific sulphydryl-specific reagents, in order to introduce a strong positive or negative harge at positions of substitution. The introduction of a negative charge in the stem region onverted the selectivity of the channel from weak anionic to more cationic. However, the troduction of a positive charge increased its selectivity to the anion. The degree of these alterations was inversely dependent on the channel radius at the position of the introduced harge (selectivity). As to the asymmetry of the conductance-voltage, the influence of the harge was more complex. The introduction of the negative charge in the stem region (the trans art of the pore) provoked a decrease. The intensity of these alterations depended on the radius, and on the type of free charge at the pore entrance. These results suggest that the free charge at surrounds the pore wall is responsible for the cation-anion selectivity of the channel. The istribution of the charges between the entrances is crucial for determining the asymmetry of e conductance-voltage curves. We hope that these results serve as a model for studies with other nanometric channels, in biological or planar lipid bilayer membranes or in iotechnological applications

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work aimed to develop a suitable magnetic system for administration by the oral route. In addition to that, it was intended to review the current uses of magnetic systems and the safety related to magnetic field exposure. Methods: Coprecipitation and emulsification/crosslinking were carried out in order to synthesize magnetite particles and to coat them, respectively. Results: According to literature review, it was found that magnetic particles present several properties such as magnetophoresis in magnetic field gradient, production of a surrounding magnetic field, and heat generation in alternated magnetic field. When the human organism is exposed to magnetic fields, several interaction mechanisms come into play. However, biological tissues present low magnetic susceptibility. As a result, the effects are not so remarkable. Concerning the development of a magnetic system for oral route, uncoated magnetite particles did undergo significant dissolution at gastric pH. On the other hand, such process was inhibited in the xylan-coated particles. Conclusions: Due to their different properties, magnetic systems have been widely used in biosciences. However, the consequent increased human exposure to magnetic fields has been considered relatively safe. Concerning the experimental work, it was developed a polymer-coated magnetic system. It may be very promising for administration by the oral route for therapy and diagnostic applications as dissolution at gastric pH hardly took place

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this work was to perform the extraction and characterization of xylan from corn cobs and prepare xylan-based microcapsules. For that purpose, an alkaline extraction of xylan was carried out followed by the polymer characterization regarding its technological properties, such as angle of repose, Hausner factor, density, compressibility and compactability. Also, a low-cost and rapid analytical procedure to identify xylan by means of infrared spectroscopy was studied. Xylan was characterized as a yellowish fine powder with low density and poor flow properties. After the extraction and characterization of the polymer, xylan-based microcapsules were prepared by means of interfacial crosslinking polymerization and their characterization was performed in order to obtain gastroresistant multiparticulate systems. This work involved the most suitable parameters of the preparation of microcapsules as well as the study of the process, scale-up methodology and biological analysis. Magnetic nanoparticles were used as a model system to be encapsulated by the xylan microcapsules. According to the results, xylan-based microcapsules were shown to be resistant to several conditions found along the gastrointestinal tract and they were able to avoid the early degradation of the magnetic nanoparticles

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, several species of scorpions are known to cause accidents which can lead to death, which are mainly belonging to the genus Tityus. The scorpion Tityus serrulatus is the main responsible for more severe cases. Anti-scorpion serums are routinely produced by various institutions, despite their effectiveness, quality and action depends on how quickly treatment is started. Studies have been developed in the search for appropriate technologies to encapsulate and release recombinant or natives proteins capable of inducing antibody production. In this context, chitosan copolymer which can be obtained from the partial deacetylation of chitin or in some microorganisms and it is biocompatible and biodegradable has been widely used for this purpose. This study aimed to search for a system release from chitosan nanoparticles for peptide / protein of the venom of the scorpion T. serrulatus, able to provide a new model of immunization in animals, in order to obtain a potential novel polyclonal serum, anti-venom T. serrulatus. The chitosan nanoparticles were prepared by ionic gelation with polyanion tripolyphosphate (TPP). After standardizing the concentrations of TPP and chitosan was evaluated the efficiency of incorporation of bovine serum albumin (BSA) and scorpion venom, showed particle size compatible with the intended purpose. The particles showed adequate size around 200nm. The crosslinking was confirmed by absorption spectroscopy in the infrared. After verified the high encapsulation efficiency (EE) for acid bicinconínico method (BCA) protein assay and the particle size distribution, the success of the technique was proven and the potential for in vivo application of nanoparticles. The experimental animals were vaccinated and the antibodies measured by ELISA

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kalanchoe brasiliensis Cambess (Crassulaceae), commonly known as saião , coirama branca , folha grossa , is originally from Brazil and commonly found in São Paulo to Bahia, mainly in the coastal zone. Regarding of biological activities, most preclinical studies were found in the literature, mainly about the anti-inflammatory activity of extracts obtained from leaves and / or aerial parts of K. brasiliensis. As regards the chemical constitution, it has been reported mainly the presence of flavonoids in the leaves of the species, but until this moment did not knows which are the active compounds. Although it is a species widely used in traditional medicine in Brazil, there is no monograph about the quality parameters of the plant drug. In this context, this study aims to characterize and quantify the chemical markers of hydroethanolic extract (HE) from the leaves of K. brasiliensis, which can be used in quality control of plant drug and derivatives obtained from this species. The methodology was divided into two parts: i. Phytochemical study: to fractionate, isolate and characterizate of the chemical (s) marker (s) of the HE from the leaves of K. brasiliensis; ii. To Developed validate of analytical method by High Performance Liquid Chromatography (HPLC)-diode array detector (DAD) to quantify the chemical (s) marker (s) of the EH. i. The EH 50% was prepared by turbo extraction method. It was then submitted to liquid-liquid partition, obtaining dichloromethane, n-butanol and ethyl acetate (AcOEt) fractions. The AcOEt fraction was selected to continue the fractionation process, because it has a chemical profile rich in flavonoids. The acOEt fraction was submitted to column chromatography using different systems for obtaining the compound Kb1. To identify this compound, it was submitted to UV analysis ii. For quantitative analysis, the EH was analyzed by HPLC, using different methods. After selecting the most appropriate method, which showed satisfactory resolution and symmetrical peaks, it was validated according to parameters in the RE 899/2003. As result, it was obtained from the AcOEt fraction the compound Kb1 (2.7 mg). Until this moment, the basic nucleus was characterized by UV analysis using shift reagents. The partial chemical structure of the compound Kb1 was identified as a flavonol, containing hydroxyls in 3 , 4 position (ring A), 5 and 7 free (ring B) and a replacement of the C3 hydroxyl by a sugar. As the analysis were performed in the HPLC coupled to a DAD, we observed that the UV spectrum of the major peaks of EH from K. brasiliensis shown similar UV spectrum. According to the literature, it has been reported the presence of patuletin glycosydes derivatives in the leaves of this species. Therefore, it is suggested that the compound Kb1 is glycosylated patuletin derivative. Probably the sugar (s) unit(s) are linked in the C3 in the C ring. . Regarding the development of HPLC analytical method, the system used consists of phase A: water: formic acid (99,7:0,3, v / v) and phase B: methanol: formic acid (99,7:0,3, v / v), elution gradient of 40% B - 58% B in 50 minutes, ccolumn (Hichrom ®) C18 (250x4, 0 mm, 5 μm), flow rate 0.8 mL / min, UV detection at 370 nm, temperature 25 ° C. In the analysis performed with the co-injection of thecompound Kb1 + HE of K. brasiliensis was observed that it is one of the major compounds with a retention time of 12.47 minutes and had a content of 15.3% in EH of leaves from K. brasiliensis. The method proved to be linear, precise, accurate and reproducible. According to these results, it was observed that compound Kb1 can be used as a chemical marker of EH from leaves of K. brasiliensis, to assist in quality control of drug plant and its derivatives

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A chemical process optimization and control is strongly correlated with the quantity of information can be obtained from the system. In biotechnological processes, where the transforming agent is a cell, many variables can interfere in the process, leading to changes in the microorganism metabolism and affecting the quantity and quality of final product. Therefore, the continuously monitoring of the variables that interfere in the bioprocess, is crucial to be able to act on certain variables of the system, keeping it under desirable operational conditions and control. In general, during a fermentation process, the analysis of important parameters such as substrate, product and cells concentration, is done off-line, requiring sampling, pretreatment and analytical procedures. Therefore, this steps require a significant run time and the use of high purity chemical reagents to be done. In order to implement a real time monitoring system for a benchtop bioreactor, these study was conducted in two steps: (i) The development of a software that presents a communication interface between bioreactor and computer based on data acquisition and process variables data recording, that are pH, temperature, dissolved oxygen, level, foam level, agitation frequency and the input setpoints of the operational parameters of the bioreactor control unit; (ii) The development of an analytical method using near-infrared spectroscopy (NIRS) in order to enable substrate, products and cells concentration monitoring during a fermentation process for ethanol production using the yeast Saccharomyces cerevisiae. Three fermentation runs were conducted (F1, F2 and F3) that were monitored by NIRS and subsequent sampling for analytical characterization. The data obtained were used for calibration and validation, where pre-treatments combined or not with smoothing filters were applied to spectrum data. The most satisfactory results were obtained when the calibration models were constructed from real samples of culture medium removed from the fermentation assays F1, F2 and F3, showing that the analytical method based on NIRS can be used as a fast and effective method to quantify cells, substrate and products concentration what enables the implementation of insitu real time monitoring of fermentation processes

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find altenatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo¬Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. it's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern with the environment, in addition to strict laws, has induced the industries to find alternatives to the treatment of their wastes. Actually, the oil industry has sought solutions to overcome a big environmental problem, i.e., oil field produced water being discharged to the sea. These effluents have organic compounds dissolved, such as polycyclic aromatic hydrocarbons, phenols, benzene, toluene, ethylbenzene and xylenes (BTEX). These compounds are difficult to be removed and have high toxicity. The advanced oxidation processes - AOP are effective to degradation of these organic compounds, because they generate hydroxyl radicals with high potential of oxidation. This work includes the reactor photochemical development applied in the photodegradation treatment (by photo-Fenton process) of wastewaters containing organic compounds dissolved, aiming at treatment and recovery the oil field produced water. The studied reactor allowed the evaluation of two ultraviolet radiation sources that is the main factor to describe the feasibility of the photo- Fenton treatment, i.e., sun and black light fluorescent lamps, and other relevant variables the process: concentration of reagents, irradiated area and also various reactor configurations to maximize the use of radiation. The organic matter degradation was verified with samples collected during the experimental and analyzed with a total organic carbon analyzer (TOC), which expressed the results in terms of mgC/L. The solar radiation was more effective than radiation from the lamps. It's an important factor for the operation costs cutting. Preliminary experiments applied to oil field produced water treatment have showed satisfactory results, reducing up to 76 % of organic matter

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural gas, although basically composed by light hydrocarbons, also presents contaminant gases in its composition, such as CO2 (carbon dioxide) and H2S (hydrogen sulfide). The H2S, which commonly occurs in oil and gas exploration and production activities, causes damages in oil and natural gas pipelines. Consequently, the removal of hydrogen sulfide gas will result in an important reduction in operating costs. Also, it is essential to consider the better quality of the oil to be processed in the refinery, thus resulting in benefits in economic, environmental and social areas. All this facts demonstrate the need for the development and improvement in hydrogen sulfide scavengers. Currently, the oil industry uses several processes for hydrogen sulfide removal from natural gas. However, these processes produce amine derivatives which can cause damage in distillation towers, can cause clogging of pipelines by formation of insoluble precipitates, and also produce residues with great environmental impact. Therefore, it is of great importance the obtaining of a stable system, in inorganic or organic reaction media, able to remove hydrogen sulfide without formation of by-products that can affect the quality and cost of natural gas processing, transport, and distribution steps. Seeking the study, evaluation and modeling of mass transfer and kinetics of hydrogen removal, in this study it was used an absorption column packed with Raschig rings, where the natural gas, with H2S as contaminant, passed through an aqueous solution of inorganic compounds as stagnant liquid, being this contaminant gas absorbed by the liquid phase. This absorption column was coupled with a H2S detection system, with interface with a computer. The data and the model equations were solved by the least squares method, modified by Levemberg-Marquardt. In this study, in addition to the water, it were used the following solutions: sodium hydroxide, potassium permanganate, ferric chloride, copper sulfate, zinc chloride, potassium chromate, and manganese sulfate, all at low concentrations (»10 ppm). These solutions were used looking for the evaluation of the interference between absorption physical and chemical parameters, or even to get a better mass transfer coefficient, as in mixing reactors and absorption columns operating in counterflow. In this context, the evaluation of H2S removal arises as a valuable procedure for the treatment of natural gas and destination of process by-products. The study of the obtained absorption curves makes possible to determine the mass transfer predominant stage in the involved processes, the mass transfer volumetric coefficients, and the equilibrium concentrations. It was also performed a kinetic study. The obtained results showed that the H2S removal kinetics is greater for NaOH. Considering that the study was performed at low concentrations of chemical reagents, it was possible to check the effect of secondary reactions in the other chemicals, especially in the case of KMnO4, which shows that your by-product, MnO2, acts in H2S absorption process. In addition, CuSO4 and FeCl3 also demonstrated to have good efficiency in H2S removal

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Latices based on acrylic acid and ethyl methacrylate, crosslinked with 1,6‐propoxylate‐hexanodiol diacrylate were synthesized via emulsion polymerization with different monomeric compositions. The resultant latices were thickened with different NaOH/(acrylic acid) molar ratios and were characterized by titrimetry, zeta potential measurements, turbidimetry, and capillary viscometry. Intrinsic viscosity was determined for an uncrosslinked copolymer, using toluene as solvent. All the latices were coagulated with NaCl and washed with water at 60°C analyzed by FTIR spectrophotometry, in order to characterize functional groups from the copolymer and crosslinking agent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quantitative chemical characterization of the inorganic fraction of scale products is very relevant in studying, monitoring and controlling corrosive processes of oil pipelines. The X-ray fluorescence spectrometry (XRF) is a very versatile analytical technique, which can be used in quantitative analysis in solid samples at low concentrations of the chemical element, in the order of few ppm. A methodology that involves sample preparation diluted in the proportion of 1:7 (one portion of the sample for seven of wax), pressed as pellets was used in the XRF calibration for chemical analysis of scale products from oil pipelines. The calibration involved the preparation of reference samples from mixtures of P.A. reagents, aiming to optimize the time consumed in the steps of sample preparation and analysis of Al, Ba, Ca, Fe, K, Mg, Mn, Na, P, S, Si, Sr and Ti, using the same pressed pellet for trace and major elements analysis

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study utilized the thermogravimetry (TG) and optical emission spectroscopy with inductively coupled plasma - ICP / OES to determine the calcium content in tablets of carbonate, citrate and calcium lactate used in the treatment of osteoporosis. The samples were characterized by IR, SEM, TG / DTG, DTA, DSC and XRD. The thermal analysis evaluated the thermal stability and physical-chemical events and showed that the excipients influence the decomposition of active ingredients. The results of thermogravimetry indicated that the decomposition temperature of the active CaCO3 (T = 630.2 °C) is lower compared to that obtained in samples of the tablets (633.4 to 655.2 °C) except for sample AM 2 (Ti = 613.8 oC). In 500.0 °C in the samples of citrate and calcium lactate, as well as their respective active principles had already been formed calcium carbonate. The use of N2 atmosphere resulted in shifting the initial and final temperature related to the decomposition of CaCO3. In the DTA and DSC curves were observed endo and exothermic events for the samples of tablets and active ingredients studied. The infrared spectra identified the main functional groups in all samples of active ingredients, excipients and tablets studied, such as symmetric and asymmetric stretches of the groups OH, CH, C = O. Analysis by X-ray diffraction showed that all samples are crystalline and that the final residue showed peaks indicative of the presence of calcium hydroxide by the reaction of calcium oxide with moisture of the air. Although the samples AM 1, AM 2, AM 3 and AM 6 in their formulations have TiO2 and SiO2 peaks were not observed in X-ray diffractograms of these compounds. The results obtained by TGA to determine the calcium content of the drugs studied were satisfactory when compared with those obtained by ICP-OES. In the AM 1 tablet was obtained the content of 35.37% and 32.62% for TG by ICP-OES, at 6 AM a percentage of 17.77% and 16.82% and for AM 7 results obtained were 8.93% for both techniques, showing that the thermogravimetry can be used to determine the percentage of calcium in tablets. The technique offers speed, economy in the use of samples and procedures eliminating the use of acid reagents in the process of the sample and efficiency results.