1 resultado para crew-scheduling
em Universidade Federal do Rio Grande do Norte(UFRN)
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (14)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Aston University Research Archive (19)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (103)
- Brock University, Canada (35)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (6)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (10)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (49)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (16)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (13)
- DigitalCommons@University of Nebraska - Lincoln (5)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (49)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (8)
- Harvard University (7)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico do Porto, Portugal (265)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (12)
- Martin Luther Universitat Halle Wittenberg, Germany (5)
- Massachusetts Institute of Technology (3)
- National Aerospace Laboratory (NLR) Reports Repository (1)
- Nottingham eTheses (25)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (5)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (19)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (25)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (7)
- Scielo Saúde Pública - SP (14)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (4)
- Universidad Politécnica de Madrid (24)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (8)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (17)
- Université de Montréal, Canada (14)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (63)
- University of Queensland eSpace - Australia (16)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
This work aims to "build" rostering urban bus crews to minimize the cost of overtime. For this purpose a mathematical model was developed based on case study in an urban transport company in the metropolitan region of Natal. This problem is usually known in the literature as the Crew Scheduling Problem (CSP) and classified as NP-hard. The mathematical programming takes into account constraints such as: completion of all trips, daily and maximum allowable range of home and / or food. We used the Xpress-MP software to implement and validate the proposed model. For the tested instances the application of the model allowed a reduction in overtime from 38% to 84%