8 resultados para cost-benefit ratio
em Universidade Federal do Rio Grande do Norte(UFRN)
Resumo:
This work searches to offer a model to improve spare parts stock management for companies of urban passenger transport by bus, with the consequent progress in their maintenance management. Also known as MRO items (Maintenance, Repair and Operations), these spare parts, according their consumption and demand features, cost, criticity to operation, lead-time, quantity of suppliers, among other parameters, shouldn´t have managed their inventory like normal production items (work in process e final products), that because their features, are managed by more predictable models based, for example, in economic order quantity. In the case specifically of companies of urban passenger transport by bus, items MRO have significant importance in their assets and a bad management of these inventories can cause serious losses to company, leading it even bankrupticy business, in more severe situations which missing spare part provokes vehicles shutdown indefinitely. Given slight attention to the issue, which translates in little literature available about it when compared to that literature about normal items stocks, and due the fact that MRO items be critical to bus urban transport of passengers companies´, it is necessary, so, deepen in this theme searching to give technical and scientific subsidies to companies that work, in many times, empirically, with these so decisive inputs to their business. As a typical portfolio problem, in which there are n items, separated into critical and noncritical, while competing for the same resource, it was developed a new algorithm to aid in a better inventory management of spare parts used only in corrective maintenance (whose failures are unpredictable and random), by analyzing the cost-benefit ratio, which compares the level of service versus cost of each item. The model was tested in a company of urban passenger transport by bus from the city of Natal, who anonymously provided their real data to application in this work
Resumo:
This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost
Resumo:
In this study, we investigated the role of routes and information attainment for the queenless ant species Dinoponera quadriceps foraging efficiency. Two queenless ant colonies were observed in an area of Atlantic secondary Forest at the FLONA-ICMBio of Nisia Floresta, in the state of Rio Grande do Norte, northeastern Brazil, at least once a week. In the first stage of the study, we observed the workers, from leaving until returning to the colony. In the second stage, we introduced a acrylic plate (100 x 30 x 0,8 cm) on a selected entrance of the nest early in the morning before the ants left the nest. All behavioral recordings were done through focal time and all occurence samplings. The recording windows were of 15 minutes with 1 minute interval, and 5 minute intervals between each observation window. Foraging was the main activity when the workers were outside the nest. There was a positive correlation between time outside the nest and distance travelled by the ants. These variables influenced the proportion of resource that was taken to the nest, that is, the bigger its proportion, the longer the time outside and distance travelled during the search. That proportion also influenced the time the worker remained in the nest before a new trip, the bigger the proportion of the item, the shorter was the time in the nest. During all the study, workers showed fidelity to the route and to the sectors in the home range, even when the screen was in the ant´s way, once they deviated and kept the route. The features of foraging concerning time, distance, route and flexibility to go astray by the workers indicate that decisions are made by each individual and are optimal in terms of a cost-benefit relation. The strategy chosen by queenless ants fits the central place foraging and marginal value theorem theories and demonstrate its flexibility to new informations. This indicates that the workers can learn new environmental landmarks to guide their routes
Resumo:
The polymer matrix composite materials are being used on a large scale in the most different industrial fields such as aerospace, automotive, oil, among others, since the industrial perspectives is currently working with materials which have a good mechanical performance at high service life and cost / benefit. Thus, the determination of the mechanical properties is indispensable for the characterization of waste resulting in greater expansion of this type of material. Thus, this work will be obtained three plates laminated with tereftálica polymeric matrix reinforced by a bidirectional woven E-glass and kevlar both industrially made, where the plates are manufactured by manual lamination process (hand lay-up), all laminates have five enhancement layers, the first hybrid laminate will consist of bidirectional woven E-glass fiber, kevlar fiber interspersed with layers, is formed by the second bidirectional woven kevlar fiber at the ends of the laminate (two layers), and in the center the glass fiber fabric (three layers), the third plate is composed of only the bidirectional woven E-glass fiber. Then were prepared specimens (CP) by standard, to determine the mechanical properties of tensile and bending in three points. After fabrication of the specimens, they were immersed in oil and seawater. After that, there was a comparison of the mechanical properties for the test condition in the dry state. Showing that there was a considerable increase in the properties studied because the effect of hybridization in laminates.
Resumo:
This research consists in studying the influence of the various type of construction systems of roofs with their energy efficiency as well as on the cost benefit for the commercial buildings on the temperatures condition of the city of Natal/RN. The main goal of this research is to analyze the cost benefit of the construction systems of roofs available on the market, taking into consideration the energy efficiency of the commercial buildings artificially air conditioned in order to be used by the projectors and to be adequated to the temperatures condition of the city of Natal/RN. The method of valuation of the cost benefit of roof systems consists in six steps: Features and simulation of the reference building; Analyze of sensitivity; Analyzes, features and simulation of alternatives of roof construction systems; Analyze of the cost of implementation; Analyze of the benefits of the alternatives comparing to the base case; And finally the analyze of the cost benefit. The model type chosen as reference was stores with pre molded buildings and system of roof with fiber ciment and ceiling . The thermal results showed the influence of the roof system on the energy efficiency of the building. The Final results of the simulations of the alternatives comes to a conclusion that the absortance is the variable that presents the best cost benefit relation and the reduction on the thermal transmittance still has limitations because of the high cost
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas
Resumo:
This paper addresses the theme of retrotif applied to buildings that belong to the modernist architectural production of historical interest located in the urban area of Natal . The overall objective is to identify and harmonize procedures for retrofit and architectural heritage preservation using elements of constructive analysis of expression and Benefit Cost Ratio ( BCR ) parameters established by the National Electric Energy Agency - ANEEL . The hypothesis put forward is that by stimulating the projetual year analysis , retrofit interventions , it is possible to obtain better results with projects RCB addressing the issues of preservation of architectural heritage . For both flow analysis of process solutions and proposals for action of elements and systems that seek to improve the energy performance of the building , restoring or preserving the architectural elements were developed . The proposed interventions undergo performance through computer simulations of systems such as DesignBuilder, Solar and Sun Tool. The energy results were converted to the analysis of RCB parameter and compared to the constructive expression of the project because the prenatal and intervention. From the results , a plot was constructed which results in a comparison between the RCB and the constructive expression of the simulated interventions
Resumo:
Continuous Synthesis by Solution Combustion was employed in this work aiming to obtain tin dioxide nanostructured. Basically, a precursor solution is prepared and then be atomized and sprayed into the flame, where its combustion occurs, leading to the formation of particles. This is a recent technique that shows an enormous potential in oxides deposition, mainly by the low cost of equipment and precursors employed. The tin dioxide (SnO2) nanostructured has been widely used in various applications, especially as gas sensors and varistors. In the case of sensors based on semiconducting ceramics, where surface reactions are responsible for the detection of gases, the importance of surface area and particle size is even greater. The preference for a nanostructured material is based on its significant increase in surface area compared to conventional microcrystalline powders and small particle size, which may benefit certain properties such as high electrical conductivity, high thermal stability, mechanical and chemical. In this work, were employed as precursor solution tin chloride dehydrate diluted in anhydrous ethyl alcohol. Were utilized molar ratio chloride/solvent of 0,75 with the purpose of investigate its influence in the microstructure of produced powder. The solution precursor flux was 3 mL/min. Analysis with X-ray diffraction appointed that a solution precursor with molar ratio chloride/solvent of 0,75 leads to crystalline powder with single phase and all peaks are attributed to phase SnO2. Parameters as distance from the flame with atomizer distance from the capture system with the pilot, molar ratio and solution flux doesn t affect the presence of tin dioxide in the produced powder. In the characterization of the obtained powder techniques were used as thermogravimetric (TGA) and thermodiferential analysis (DTA), particle size by laser diffraction (GDL), crystallographic analysis by X-ray diffraction (XRD), morphology by scanning electron microscopy (SEM), transmission electron microscopy (TEM), specific surface area (BET) and electrical conductivity analysis. The techniques used revealed that the SnO2 exhibits behavior of a semiconductor material, and a potentially promising material for application as varistor and sensor systems for gas